| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itg2i1fseq.1 |  |-  ( ph -> F e. MblFn ) | 
						
							| 2 |  | itg2i1fseq.2 |  |-  ( ph -> F : RR --> ( 0 [,) +oo ) ) | 
						
							| 3 |  | itg2i1fseq.3 |  |-  ( ph -> P : NN --> dom S.1 ) | 
						
							| 4 |  | itg2i1fseq.4 |  |-  ( ph -> A. n e. NN ( 0p oR <_ ( P ` n ) /\ ( P ` n ) oR <_ ( P ` ( n + 1 ) ) ) ) | 
						
							| 5 |  | itg2i1fseq.5 |  |-  ( ph -> A. x e. RR ( n e. NN |-> ( ( P ` n ) ` x ) ) ~~> ( F ` x ) ) | 
						
							| 6 |  | itg2i1fseq.6 |  |-  S = ( m e. NN |-> ( S.1 ` ( P ` m ) ) ) | 
						
							| 7 |  | itg2i1fseq3.7 |  |-  ( ph -> ( S.2 ` F ) e. RR ) | 
						
							| 8 |  | icossicc |  |-  ( 0 [,) +oo ) C_ ( 0 [,] +oo ) | 
						
							| 9 |  | fss |  |-  ( ( F : RR --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ ( 0 [,] +oo ) ) -> F : RR --> ( 0 [,] +oo ) ) | 
						
							| 10 | 2 8 9 | sylancl |  |-  ( ph -> F : RR --> ( 0 [,] +oo ) ) | 
						
							| 11 | 10 | adantr |  |-  ( ( ph /\ k e. NN ) -> F : RR --> ( 0 [,] +oo ) ) | 
						
							| 12 | 3 | ffvelcdmda |  |-  ( ( ph /\ k e. NN ) -> ( P ` k ) e. dom S.1 ) | 
						
							| 13 | 1 2 3 4 5 | itg2i1fseqle |  |-  ( ( ph /\ k e. NN ) -> ( P ` k ) oR <_ F ) | 
						
							| 14 |  | itg2ub |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ ( P ` k ) e. dom S.1 /\ ( P ` k ) oR <_ F ) -> ( S.1 ` ( P ` k ) ) <_ ( S.2 ` F ) ) | 
						
							| 15 | 11 12 13 14 | syl3anc |  |-  ( ( ph /\ k e. NN ) -> ( S.1 ` ( P ` k ) ) <_ ( S.2 ` F ) ) | 
						
							| 16 | 1 2 3 4 5 6 7 15 | itg2i1fseq2 |  |-  ( ph -> S ~~> ( S.2 ` F ) ) |