Step |
Hyp |
Ref |
Expression |
1 |
|
itg2val.1 |
|- L = { x | E. g e. dom S.1 ( g oR <_ F /\ x = ( S.1 ` g ) ) } |
2 |
|
itg1cl |
|- ( g e. dom S.1 -> ( S.1 ` g ) e. RR ) |
3 |
2
|
rexrd |
|- ( g e. dom S.1 -> ( S.1 ` g ) e. RR* ) |
4 |
|
simpr |
|- ( ( g oR <_ F /\ x = ( S.1 ` g ) ) -> x = ( S.1 ` g ) ) |
5 |
4
|
eleq1d |
|- ( ( g oR <_ F /\ x = ( S.1 ` g ) ) -> ( x e. RR* <-> ( S.1 ` g ) e. RR* ) ) |
6 |
3 5
|
syl5ibrcom |
|- ( g e. dom S.1 -> ( ( g oR <_ F /\ x = ( S.1 ` g ) ) -> x e. RR* ) ) |
7 |
6
|
rexlimiv |
|- ( E. g e. dom S.1 ( g oR <_ F /\ x = ( S.1 ` g ) ) -> x e. RR* ) |
8 |
7
|
abssi |
|- { x | E. g e. dom S.1 ( g oR <_ F /\ x = ( S.1 ` g ) ) } C_ RR* |
9 |
1 8
|
eqsstri |
|- L C_ RR* |