| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itg2val.1 |  |-  L = { x | E. g e. dom S.1 ( g oR <_ F /\ x = ( S.1 ` g ) ) } | 
						
							| 2 |  | itg1cl |  |-  ( g e. dom S.1 -> ( S.1 ` g ) e. RR ) | 
						
							| 3 | 2 | rexrd |  |-  ( g e. dom S.1 -> ( S.1 ` g ) e. RR* ) | 
						
							| 4 |  | simpr |  |-  ( ( g oR <_ F /\ x = ( S.1 ` g ) ) -> x = ( S.1 ` g ) ) | 
						
							| 5 | 4 | eleq1d |  |-  ( ( g oR <_ F /\ x = ( S.1 ` g ) ) -> ( x e. RR* <-> ( S.1 ` g ) e. RR* ) ) | 
						
							| 6 | 3 5 | syl5ibrcom |  |-  ( g e. dom S.1 -> ( ( g oR <_ F /\ x = ( S.1 ` g ) ) -> x e. RR* ) ) | 
						
							| 7 | 6 | rexlimiv |  |-  ( E. g e. dom S.1 ( g oR <_ F /\ x = ( S.1 ` g ) ) -> x e. RR* ) | 
						
							| 8 | 7 | abssi |  |-  { x | E. g e. dom S.1 ( g oR <_ F /\ x = ( S.1 ` g ) ) } C_ RR* | 
						
							| 9 | 1 8 | eqsstri |  |-  L C_ RR* |