Step |
Hyp |
Ref |
Expression |
1 |
|
reex |
|- RR e. _V |
2 |
1
|
a1i |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ G : RR --> ( 0 [,] +oo ) ) /\ h e. dom S.1 ) -> RR e. _V ) |
3 |
|
i1ff |
|- ( h e. dom S.1 -> h : RR --> RR ) |
4 |
3
|
adantl |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ G : RR --> ( 0 [,] +oo ) ) /\ h e. dom S.1 ) -> h : RR --> RR ) |
5 |
|
ressxr |
|- RR C_ RR* |
6 |
|
fss |
|- ( ( h : RR --> RR /\ RR C_ RR* ) -> h : RR --> RR* ) |
7 |
4 5 6
|
sylancl |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ G : RR --> ( 0 [,] +oo ) ) /\ h e. dom S.1 ) -> h : RR --> RR* ) |
8 |
|
simpll |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ G : RR --> ( 0 [,] +oo ) ) /\ h e. dom S.1 ) -> F : RR --> ( 0 [,] +oo ) ) |
9 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
10 |
|
fss |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( 0 [,] +oo ) C_ RR* ) -> F : RR --> RR* ) |
11 |
8 9 10
|
sylancl |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ G : RR --> ( 0 [,] +oo ) ) /\ h e. dom S.1 ) -> F : RR --> RR* ) |
12 |
|
simplr |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ G : RR --> ( 0 [,] +oo ) ) /\ h e. dom S.1 ) -> G : RR --> ( 0 [,] +oo ) ) |
13 |
|
fss |
|- ( ( G : RR --> ( 0 [,] +oo ) /\ ( 0 [,] +oo ) C_ RR* ) -> G : RR --> RR* ) |
14 |
12 9 13
|
sylancl |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ G : RR --> ( 0 [,] +oo ) ) /\ h e. dom S.1 ) -> G : RR --> RR* ) |
15 |
|
xrletr |
|- ( ( x e. RR* /\ y e. RR* /\ z e. RR* ) -> ( ( x <_ y /\ y <_ z ) -> x <_ z ) ) |
16 |
15
|
adantl |
|- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ G : RR --> ( 0 [,] +oo ) ) /\ h e. dom S.1 ) /\ ( x e. RR* /\ y e. RR* /\ z e. RR* ) ) -> ( ( x <_ y /\ y <_ z ) -> x <_ z ) ) |
17 |
2 7 11 14 16
|
caoftrn |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ G : RR --> ( 0 [,] +oo ) ) /\ h e. dom S.1 ) -> ( ( h oR <_ F /\ F oR <_ G ) -> h oR <_ G ) ) |
18 |
|
simplr |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ G : RR --> ( 0 [,] +oo ) ) /\ ( h e. dom S.1 /\ h oR <_ G ) ) -> G : RR --> ( 0 [,] +oo ) ) |
19 |
|
simprl |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ G : RR --> ( 0 [,] +oo ) ) /\ ( h e. dom S.1 /\ h oR <_ G ) ) -> h e. dom S.1 ) |
20 |
|
simprr |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ G : RR --> ( 0 [,] +oo ) ) /\ ( h e. dom S.1 /\ h oR <_ G ) ) -> h oR <_ G ) |
21 |
|
itg2ub |
|- ( ( G : RR --> ( 0 [,] +oo ) /\ h e. dom S.1 /\ h oR <_ G ) -> ( S.1 ` h ) <_ ( S.2 ` G ) ) |
22 |
18 19 20 21
|
syl3anc |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ G : RR --> ( 0 [,] +oo ) ) /\ ( h e. dom S.1 /\ h oR <_ G ) ) -> ( S.1 ` h ) <_ ( S.2 ` G ) ) |
23 |
22
|
expr |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ G : RR --> ( 0 [,] +oo ) ) /\ h e. dom S.1 ) -> ( h oR <_ G -> ( S.1 ` h ) <_ ( S.2 ` G ) ) ) |
24 |
17 23
|
syld |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ G : RR --> ( 0 [,] +oo ) ) /\ h e. dom S.1 ) -> ( ( h oR <_ F /\ F oR <_ G ) -> ( S.1 ` h ) <_ ( S.2 ` G ) ) ) |
25 |
24
|
ancomsd |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ G : RR --> ( 0 [,] +oo ) ) /\ h e. dom S.1 ) -> ( ( F oR <_ G /\ h oR <_ F ) -> ( S.1 ` h ) <_ ( S.2 ` G ) ) ) |
26 |
25
|
exp4b |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ G : RR --> ( 0 [,] +oo ) ) -> ( h e. dom S.1 -> ( F oR <_ G -> ( h oR <_ F -> ( S.1 ` h ) <_ ( S.2 ` G ) ) ) ) ) |
27 |
26
|
com23 |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ G : RR --> ( 0 [,] +oo ) ) -> ( F oR <_ G -> ( h e. dom S.1 -> ( h oR <_ F -> ( S.1 ` h ) <_ ( S.2 ` G ) ) ) ) ) |
28 |
27
|
3impia |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ G : RR --> ( 0 [,] +oo ) /\ F oR <_ G ) -> ( h e. dom S.1 -> ( h oR <_ F -> ( S.1 ` h ) <_ ( S.2 ` G ) ) ) ) |
29 |
28
|
ralrimiv |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ G : RR --> ( 0 [,] +oo ) /\ F oR <_ G ) -> A. h e. dom S.1 ( h oR <_ F -> ( S.1 ` h ) <_ ( S.2 ` G ) ) ) |
30 |
|
simp1 |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ G : RR --> ( 0 [,] +oo ) /\ F oR <_ G ) -> F : RR --> ( 0 [,] +oo ) ) |
31 |
|
itg2cl |
|- ( G : RR --> ( 0 [,] +oo ) -> ( S.2 ` G ) e. RR* ) |
32 |
31
|
3ad2ant2 |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ G : RR --> ( 0 [,] +oo ) /\ F oR <_ G ) -> ( S.2 ` G ) e. RR* ) |
33 |
|
itg2leub |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( S.2 ` G ) e. RR* ) -> ( ( S.2 ` F ) <_ ( S.2 ` G ) <-> A. h e. dom S.1 ( h oR <_ F -> ( S.1 ` h ) <_ ( S.2 ` G ) ) ) ) |
34 |
30 32 33
|
syl2anc |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ G : RR --> ( 0 [,] +oo ) /\ F oR <_ G ) -> ( ( S.2 ` F ) <_ ( S.2 ` G ) <-> A. h e. dom S.1 ( h oR <_ F -> ( S.1 ` h ) <_ ( S.2 ` G ) ) ) ) |
35 |
29 34
|
mpbird |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ G : RR --> ( 0 [,] +oo ) /\ F oR <_ G ) -> ( S.2 ` F ) <_ ( S.2 ` G ) ) |