| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itg2lea.1 |  |-  ( ph -> F : RR --> ( 0 [,] +oo ) ) | 
						
							| 2 |  | itg2lea.2 |  |-  ( ph -> G : RR --> ( 0 [,] +oo ) ) | 
						
							| 3 |  | itg2lea.3 |  |-  ( ph -> A C_ RR ) | 
						
							| 4 |  | itg2lea.4 |  |-  ( ph -> ( vol* ` A ) = 0 ) | 
						
							| 5 |  | itg2lea.5 |  |-  ( ( ph /\ x e. ( RR \ A ) ) -> ( F ` x ) <_ ( G ` x ) ) | 
						
							| 6 | 2 | adantr |  |-  ( ( ph /\ ( f e. dom S.1 /\ f oR <_ F ) ) -> G : RR --> ( 0 [,] +oo ) ) | 
						
							| 7 |  | simprl |  |-  ( ( ph /\ ( f e. dom S.1 /\ f oR <_ F ) ) -> f e. dom S.1 ) | 
						
							| 8 | 3 | adantr |  |-  ( ( ph /\ ( f e. dom S.1 /\ f oR <_ F ) ) -> A C_ RR ) | 
						
							| 9 | 4 | adantr |  |-  ( ( ph /\ ( f e. dom S.1 /\ f oR <_ F ) ) -> ( vol* ` A ) = 0 ) | 
						
							| 10 |  | i1ff |  |-  ( f e. dom S.1 -> f : RR --> RR ) | 
						
							| 11 | 10 | ad2antrl |  |-  ( ( ph /\ ( f e. dom S.1 /\ f oR <_ F ) ) -> f : RR --> RR ) | 
						
							| 12 |  | eldifi |  |-  ( x e. ( RR \ A ) -> x e. RR ) | 
						
							| 13 |  | ffvelcdm |  |-  ( ( f : RR --> RR /\ x e. RR ) -> ( f ` x ) e. RR ) | 
						
							| 14 | 11 12 13 | syl2an |  |-  ( ( ( ph /\ ( f e. dom S.1 /\ f oR <_ F ) ) /\ x e. ( RR \ A ) ) -> ( f ` x ) e. RR ) | 
						
							| 15 | 14 | rexrd |  |-  ( ( ( ph /\ ( f e. dom S.1 /\ f oR <_ F ) ) /\ x e. ( RR \ A ) ) -> ( f ` x ) e. RR* ) | 
						
							| 16 |  | iccssxr |  |-  ( 0 [,] +oo ) C_ RR* | 
						
							| 17 | 1 | adantr |  |-  ( ( ph /\ ( f e. dom S.1 /\ f oR <_ F ) ) -> F : RR --> ( 0 [,] +oo ) ) | 
						
							| 18 |  | ffvelcdm |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ x e. RR ) -> ( F ` x ) e. ( 0 [,] +oo ) ) | 
						
							| 19 | 17 12 18 | syl2an |  |-  ( ( ( ph /\ ( f e. dom S.1 /\ f oR <_ F ) ) /\ x e. ( RR \ A ) ) -> ( F ` x ) e. ( 0 [,] +oo ) ) | 
						
							| 20 | 16 19 | sselid |  |-  ( ( ( ph /\ ( f e. dom S.1 /\ f oR <_ F ) ) /\ x e. ( RR \ A ) ) -> ( F ` x ) e. RR* ) | 
						
							| 21 |  | ffvelcdm |  |-  ( ( G : RR --> ( 0 [,] +oo ) /\ x e. RR ) -> ( G ` x ) e. ( 0 [,] +oo ) ) | 
						
							| 22 | 6 12 21 | syl2an |  |-  ( ( ( ph /\ ( f e. dom S.1 /\ f oR <_ F ) ) /\ x e. ( RR \ A ) ) -> ( G ` x ) e. ( 0 [,] +oo ) ) | 
						
							| 23 | 16 22 | sselid |  |-  ( ( ( ph /\ ( f e. dom S.1 /\ f oR <_ F ) ) /\ x e. ( RR \ A ) ) -> ( G ` x ) e. RR* ) | 
						
							| 24 |  | simprr |  |-  ( ( ph /\ ( f e. dom S.1 /\ f oR <_ F ) ) -> f oR <_ F ) | 
						
							| 25 | 11 | ffnd |  |-  ( ( ph /\ ( f e. dom S.1 /\ f oR <_ F ) ) -> f Fn RR ) | 
						
							| 26 | 17 | ffnd |  |-  ( ( ph /\ ( f e. dom S.1 /\ f oR <_ F ) ) -> F Fn RR ) | 
						
							| 27 |  | reex |  |-  RR e. _V | 
						
							| 28 | 27 | a1i |  |-  ( ( ph /\ ( f e. dom S.1 /\ f oR <_ F ) ) -> RR e. _V ) | 
						
							| 29 |  | inidm |  |-  ( RR i^i RR ) = RR | 
						
							| 30 |  | eqidd |  |-  ( ( ( ph /\ ( f e. dom S.1 /\ f oR <_ F ) ) /\ x e. RR ) -> ( f ` x ) = ( f ` x ) ) | 
						
							| 31 |  | eqidd |  |-  ( ( ( ph /\ ( f e. dom S.1 /\ f oR <_ F ) ) /\ x e. RR ) -> ( F ` x ) = ( F ` x ) ) | 
						
							| 32 | 25 26 28 28 29 30 31 | ofrfval |  |-  ( ( ph /\ ( f e. dom S.1 /\ f oR <_ F ) ) -> ( f oR <_ F <-> A. x e. RR ( f ` x ) <_ ( F ` x ) ) ) | 
						
							| 33 | 24 32 | mpbid |  |-  ( ( ph /\ ( f e. dom S.1 /\ f oR <_ F ) ) -> A. x e. RR ( f ` x ) <_ ( F ` x ) ) | 
						
							| 34 | 33 | r19.21bi |  |-  ( ( ( ph /\ ( f e. dom S.1 /\ f oR <_ F ) ) /\ x e. RR ) -> ( f ` x ) <_ ( F ` x ) ) | 
						
							| 35 | 12 34 | sylan2 |  |-  ( ( ( ph /\ ( f e. dom S.1 /\ f oR <_ F ) ) /\ x e. ( RR \ A ) ) -> ( f ` x ) <_ ( F ` x ) ) | 
						
							| 36 | 5 | adantlr |  |-  ( ( ( ph /\ ( f e. dom S.1 /\ f oR <_ F ) ) /\ x e. ( RR \ A ) ) -> ( F ` x ) <_ ( G ` x ) ) | 
						
							| 37 | 15 20 23 35 36 | xrletrd |  |-  ( ( ( ph /\ ( f e. dom S.1 /\ f oR <_ F ) ) /\ x e. ( RR \ A ) ) -> ( f ` x ) <_ ( G ` x ) ) | 
						
							| 38 | 6 7 8 9 37 | itg2uba |  |-  ( ( ph /\ ( f e. dom S.1 /\ f oR <_ F ) ) -> ( S.1 ` f ) <_ ( S.2 ` G ) ) | 
						
							| 39 | 38 | expr |  |-  ( ( ph /\ f e. dom S.1 ) -> ( f oR <_ F -> ( S.1 ` f ) <_ ( S.2 ` G ) ) ) | 
						
							| 40 | 39 | ralrimiva |  |-  ( ph -> A. f e. dom S.1 ( f oR <_ F -> ( S.1 ` f ) <_ ( S.2 ` G ) ) ) | 
						
							| 41 |  | itg2cl |  |-  ( G : RR --> ( 0 [,] +oo ) -> ( S.2 ` G ) e. RR* ) | 
						
							| 42 | 2 41 | syl |  |-  ( ph -> ( S.2 ` G ) e. RR* ) | 
						
							| 43 |  | itg2leub |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ ( S.2 ` G ) e. RR* ) -> ( ( S.2 ` F ) <_ ( S.2 ` G ) <-> A. f e. dom S.1 ( f oR <_ F -> ( S.1 ` f ) <_ ( S.2 ` G ) ) ) ) | 
						
							| 44 | 1 42 43 | syl2anc |  |-  ( ph -> ( ( S.2 ` F ) <_ ( S.2 ` G ) <-> A. f e. dom S.1 ( f oR <_ F -> ( S.1 ` f ) <_ ( S.2 ` G ) ) ) ) | 
						
							| 45 | 40 44 | mpbird |  |-  ( ph -> ( S.2 ` F ) <_ ( S.2 ` G ) ) |