Step |
Hyp |
Ref |
Expression |
1 |
|
itg2cl |
|- ( F : RR --> ( 0 [,] +oo ) -> ( S.2 ` F ) e. RR* ) |
2 |
1
|
3ad2ant1 |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ A e. RR /\ ( S.2 ` F ) <_ A ) -> ( S.2 ` F ) e. RR* ) |
3 |
|
simp2 |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ A e. RR /\ ( S.2 ` F ) <_ A ) -> A e. RR ) |
4 |
|
itg2ge0 |
|- ( F : RR --> ( 0 [,] +oo ) -> 0 <_ ( S.2 ` F ) ) |
5 |
4
|
3ad2ant1 |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ A e. RR /\ ( S.2 ` F ) <_ A ) -> 0 <_ ( S.2 ` F ) ) |
6 |
|
simp3 |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ A e. RR /\ ( S.2 ` F ) <_ A ) -> ( S.2 ` F ) <_ A ) |
7 |
|
xrrege0 |
|- ( ( ( ( S.2 ` F ) e. RR* /\ A e. RR ) /\ ( 0 <_ ( S.2 ` F ) /\ ( S.2 ` F ) <_ A ) ) -> ( S.2 ` F ) e. RR ) |
8 |
2 3 5 6 7
|
syl22anc |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ A e. RR /\ ( S.2 ` F ) <_ A ) -> ( S.2 ` F ) e. RR ) |