| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itg2mono.1 |  |-  G = ( x e. RR |-> sup ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) , RR , < ) ) | 
						
							| 2 |  | itg2mono.2 |  |-  ( ( ph /\ n e. NN ) -> ( F ` n ) e. MblFn ) | 
						
							| 3 |  | itg2mono.3 |  |-  ( ( ph /\ n e. NN ) -> ( F ` n ) : RR --> ( 0 [,) +oo ) ) | 
						
							| 4 |  | itg2mono.4 |  |-  ( ( ph /\ n e. NN ) -> ( F ` n ) oR <_ ( F ` ( n + 1 ) ) ) | 
						
							| 5 |  | itg2mono.5 |  |-  ( ( ph /\ x e. RR ) -> E. y e. RR A. n e. NN ( ( F ` n ) ` x ) <_ y ) | 
						
							| 6 |  | itg2mono.6 |  |-  S = sup ( ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) , RR* , < ) | 
						
							| 7 |  | itg2mono.7 |  |-  ( ph -> T e. ( 0 (,) 1 ) ) | 
						
							| 8 |  | itg2mono.8 |  |-  ( ph -> H e. dom S.1 ) | 
						
							| 9 |  | itg2mono.9 |  |-  ( ph -> H oR <_ G ) | 
						
							| 10 |  | itg2mono.10 |  |-  ( ph -> S e. RR ) | 
						
							| 11 |  | itg2mono.11 |  |-  A = ( n e. NN |-> { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` n ) ` x ) } ) | 
						
							| 12 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 13 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 14 |  | simpr |  |-  ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> x e. RR ) | 
						
							| 15 |  | readdcl |  |-  ( ( x e. RR /\ y e. RR ) -> ( x + y ) e. RR ) | 
						
							| 16 | 15 | adantl |  |-  ( ( ( ph /\ n e. NN ) /\ ( x e. RR /\ y e. RR ) ) -> ( x + y ) e. RR ) | 
						
							| 17 |  | rge0ssre |  |-  ( 0 [,) +oo ) C_ RR | 
						
							| 18 |  | fss |  |-  ( ( ( F ` n ) : RR --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ RR ) -> ( F ` n ) : RR --> RR ) | 
						
							| 19 | 3 17 18 | sylancl |  |-  ( ( ph /\ n e. NN ) -> ( F ` n ) : RR --> RR ) | 
						
							| 20 |  | 0xr |  |-  0 e. RR* | 
						
							| 21 |  | 1xr |  |-  1 e. RR* | 
						
							| 22 |  | elioo2 |  |-  ( ( 0 e. RR* /\ 1 e. RR* ) -> ( T e. ( 0 (,) 1 ) <-> ( T e. RR /\ 0 < T /\ T < 1 ) ) ) | 
						
							| 23 | 20 21 22 | mp2an |  |-  ( T e. ( 0 (,) 1 ) <-> ( T e. RR /\ 0 < T /\ T < 1 ) ) | 
						
							| 24 | 7 23 | sylib |  |-  ( ph -> ( T e. RR /\ 0 < T /\ T < 1 ) ) | 
						
							| 25 | 24 | simp1d |  |-  ( ph -> T e. RR ) | 
						
							| 26 | 25 | renegcld |  |-  ( ph -> -u T e. RR ) | 
						
							| 27 | 8 26 | i1fmulc |  |-  ( ph -> ( ( RR X. { -u T } ) oF x. H ) e. dom S.1 ) | 
						
							| 28 | 27 | adantr |  |-  ( ( ph /\ n e. NN ) -> ( ( RR X. { -u T } ) oF x. H ) e. dom S.1 ) | 
						
							| 29 |  | i1ff |  |-  ( ( ( RR X. { -u T } ) oF x. H ) e. dom S.1 -> ( ( RR X. { -u T } ) oF x. H ) : RR --> RR ) | 
						
							| 30 | 28 29 | syl |  |-  ( ( ph /\ n e. NN ) -> ( ( RR X. { -u T } ) oF x. H ) : RR --> RR ) | 
						
							| 31 |  | reex |  |-  RR e. _V | 
						
							| 32 | 31 | a1i |  |-  ( ( ph /\ n e. NN ) -> RR e. _V ) | 
						
							| 33 |  | inidm |  |-  ( RR i^i RR ) = RR | 
						
							| 34 | 16 19 30 32 32 33 | off |  |-  ( ( ph /\ n e. NN ) -> ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) : RR --> RR ) | 
						
							| 35 | 34 | adantr |  |-  ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) : RR --> RR ) | 
						
							| 36 | 35 | ffnd |  |-  ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) Fn RR ) | 
						
							| 37 |  | elpreima |  |-  ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) Fn RR -> ( x e. ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) <-> ( x e. RR /\ ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) ` x ) e. ( -oo (,) 0 ) ) ) ) | 
						
							| 38 | 36 37 | syl |  |-  ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( x e. ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) <-> ( x e. RR /\ ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) ` x ) e. ( -oo (,) 0 ) ) ) ) | 
						
							| 39 | 14 38 | mpbirand |  |-  ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( x e. ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) <-> ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) ` x ) e. ( -oo (,) 0 ) ) ) | 
						
							| 40 |  | elioomnf |  |-  ( 0 e. RR* -> ( ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) ` x ) e. ( -oo (,) 0 ) <-> ( ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) ` x ) e. RR /\ ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) ` x ) < 0 ) ) ) | 
						
							| 41 | 20 40 | ax-mp |  |-  ( ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) ` x ) e. ( -oo (,) 0 ) <-> ( ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) ` x ) e. RR /\ ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) ` x ) < 0 ) ) | 
						
							| 42 | 34 | ffvelcdmda |  |-  ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) ` x ) e. RR ) | 
						
							| 43 | 42 | biantrurd |  |-  ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) ` x ) < 0 <-> ( ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) ` x ) e. RR /\ ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) ` x ) < 0 ) ) ) | 
						
							| 44 | 41 43 | bitr4id |  |-  ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) ` x ) e. ( -oo (,) 0 ) <-> ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) ` x ) < 0 ) ) | 
						
							| 45 | 3 | ffnd |  |-  ( ( ph /\ n e. NN ) -> ( F ` n ) Fn RR ) | 
						
							| 46 | 30 | ffnd |  |-  ( ( ph /\ n e. NN ) -> ( ( RR X. { -u T } ) oF x. H ) Fn RR ) | 
						
							| 47 |  | eqidd |  |-  ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( F ` n ) ` x ) = ( ( F ` n ) ` x ) ) | 
						
							| 48 | 26 | adantr |  |-  ( ( ph /\ n e. NN ) -> -u T e. RR ) | 
						
							| 49 |  | i1ff |  |-  ( H e. dom S.1 -> H : RR --> RR ) | 
						
							| 50 | 8 49 | syl |  |-  ( ph -> H : RR --> RR ) | 
						
							| 51 | 50 | ffnd |  |-  ( ph -> H Fn RR ) | 
						
							| 52 | 51 | adantr |  |-  ( ( ph /\ n e. NN ) -> H Fn RR ) | 
						
							| 53 |  | eqidd |  |-  ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( H ` x ) = ( H ` x ) ) | 
						
							| 54 | 32 48 52 53 | ofc1 |  |-  ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( ( RR X. { -u T } ) oF x. H ) ` x ) = ( -u T x. ( H ` x ) ) ) | 
						
							| 55 | 25 | recnd |  |-  ( ph -> T e. CC ) | 
						
							| 56 | 55 | ad2antrr |  |-  ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> T e. CC ) | 
						
							| 57 | 50 | ffvelcdmda |  |-  ( ( ph /\ x e. RR ) -> ( H ` x ) e. RR ) | 
						
							| 58 | 57 | adantlr |  |-  ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( H ` x ) e. RR ) | 
						
							| 59 | 58 | recnd |  |-  ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( H ` x ) e. CC ) | 
						
							| 60 | 56 59 | mulneg1d |  |-  ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( -u T x. ( H ` x ) ) = -u ( T x. ( H ` x ) ) ) | 
						
							| 61 | 54 60 | eqtrd |  |-  ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( ( RR X. { -u T } ) oF x. H ) ` x ) = -u ( T x. ( H ` x ) ) ) | 
						
							| 62 | 45 46 32 32 33 47 61 | ofval |  |-  ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) ` x ) = ( ( ( F ` n ) ` x ) + -u ( T x. ( H ` x ) ) ) ) | 
						
							| 63 | 19 | ffvelcdmda |  |-  ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( F ` n ) ` x ) e. RR ) | 
						
							| 64 | 63 | recnd |  |-  ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( F ` n ) ` x ) e. CC ) | 
						
							| 65 | 25 | adantr |  |-  ( ( ph /\ x e. RR ) -> T e. RR ) | 
						
							| 66 | 65 57 | remulcld |  |-  ( ( ph /\ x e. RR ) -> ( T x. ( H ` x ) ) e. RR ) | 
						
							| 67 | 66 | adantlr |  |-  ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( T x. ( H ` x ) ) e. RR ) | 
						
							| 68 | 67 | recnd |  |-  ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( T x. ( H ` x ) ) e. CC ) | 
						
							| 69 | 64 68 | negsubd |  |-  ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( ( F ` n ) ` x ) + -u ( T x. ( H ` x ) ) ) = ( ( ( F ` n ) ` x ) - ( T x. ( H ` x ) ) ) ) | 
						
							| 70 | 62 69 | eqtrd |  |-  ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) ` x ) = ( ( ( F ` n ) ` x ) - ( T x. ( H ` x ) ) ) ) | 
						
							| 71 | 70 | breq1d |  |-  ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) ` x ) < 0 <-> ( ( ( F ` n ) ` x ) - ( T x. ( H ` x ) ) ) < 0 ) ) | 
						
							| 72 |  | 0red |  |-  ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> 0 e. RR ) | 
						
							| 73 | 63 67 72 | ltsubaddd |  |-  ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( ( ( F ` n ) ` x ) - ( T x. ( H ` x ) ) ) < 0 <-> ( ( F ` n ) ` x ) < ( 0 + ( T x. ( H ` x ) ) ) ) ) | 
						
							| 74 | 68 | addlidd |  |-  ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( 0 + ( T x. ( H ` x ) ) ) = ( T x. ( H ` x ) ) ) | 
						
							| 75 | 74 | breq2d |  |-  ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( ( F ` n ) ` x ) < ( 0 + ( T x. ( H ` x ) ) ) <-> ( ( F ` n ) ` x ) < ( T x. ( H ` x ) ) ) ) | 
						
							| 76 | 71 73 75 | 3bitrd |  |-  ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) ` x ) < 0 <-> ( ( F ` n ) ` x ) < ( T x. ( H ` x ) ) ) ) | 
						
							| 77 | 39 44 76 | 3bitrd |  |-  ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( x e. ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) <-> ( ( F ` n ) ` x ) < ( T x. ( H ` x ) ) ) ) | 
						
							| 78 | 77 | notbid |  |-  ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( -. x e. ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) <-> -. ( ( F ` n ) ` x ) < ( T x. ( H ` x ) ) ) ) | 
						
							| 79 |  | eldif |  |-  ( x e. ( RR \ ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) ) <-> ( x e. RR /\ -. x e. ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) ) ) | 
						
							| 80 | 79 | baib |  |-  ( x e. RR -> ( x e. ( RR \ ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) ) <-> -. x e. ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) ) ) | 
						
							| 81 | 80 | adantl |  |-  ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( x e. ( RR \ ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) ) <-> -. x e. ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) ) ) | 
						
							| 82 | 67 63 | lenltd |  |-  ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( T x. ( H ` x ) ) <_ ( ( F ` n ) ` x ) <-> -. ( ( F ` n ) ` x ) < ( T x. ( H ` x ) ) ) ) | 
						
							| 83 | 78 81 82 | 3bitr4d |  |-  ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( x e. ( RR \ ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) ) <-> ( T x. ( H ` x ) ) <_ ( ( F ` n ) ` x ) ) ) | 
						
							| 84 | 83 | rabbi2dva |  |-  ( ( ph /\ n e. NN ) -> ( RR i^i ( RR \ ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) ) ) = { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` n ) ` x ) } ) | 
						
							| 85 |  | rembl |  |-  RR e. dom vol | 
						
							| 86 |  | i1fmbf |  |-  ( ( ( RR X. { -u T } ) oF x. H ) e. dom S.1 -> ( ( RR X. { -u T } ) oF x. H ) e. MblFn ) | 
						
							| 87 | 28 86 | syl |  |-  ( ( ph /\ n e. NN ) -> ( ( RR X. { -u T } ) oF x. H ) e. MblFn ) | 
						
							| 88 | 2 87 | mbfadd |  |-  ( ( ph /\ n e. NN ) -> ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) e. MblFn ) | 
						
							| 89 |  | mbfima |  |-  ( ( ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) e. MblFn /\ ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) : RR --> RR ) -> ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) e. dom vol ) | 
						
							| 90 | 88 34 89 | syl2anc |  |-  ( ( ph /\ n e. NN ) -> ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) e. dom vol ) | 
						
							| 91 |  | cmmbl |  |-  ( ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) e. dom vol -> ( RR \ ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) ) e. dom vol ) | 
						
							| 92 | 90 91 | syl |  |-  ( ( ph /\ n e. NN ) -> ( RR \ ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) ) e. dom vol ) | 
						
							| 93 |  | inmbl |  |-  ( ( RR e. dom vol /\ ( RR \ ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) ) e. dom vol ) -> ( RR i^i ( RR \ ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) ) ) e. dom vol ) | 
						
							| 94 | 85 92 93 | sylancr |  |-  ( ( ph /\ n e. NN ) -> ( RR i^i ( RR \ ( `' ( ( F ` n ) oF + ( ( RR X. { -u T } ) oF x. H ) ) " ( -oo (,) 0 ) ) ) ) e. dom vol ) | 
						
							| 95 | 84 94 | eqeltrrd |  |-  ( ( ph /\ n e. NN ) -> { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` n ) ` x ) } e. dom vol ) | 
						
							| 96 | 95 11 | fmptd |  |-  ( ph -> A : NN --> dom vol ) | 
						
							| 97 | 4 | ralrimiva |  |-  ( ph -> A. n e. NN ( F ` n ) oR <_ ( F ` ( n + 1 ) ) ) | 
						
							| 98 |  | fveq2 |  |-  ( n = j -> ( F ` n ) = ( F ` j ) ) | 
						
							| 99 |  | fvoveq1 |  |-  ( n = j -> ( F ` ( n + 1 ) ) = ( F ` ( j + 1 ) ) ) | 
						
							| 100 | 98 99 | breq12d |  |-  ( n = j -> ( ( F ` n ) oR <_ ( F ` ( n + 1 ) ) <-> ( F ` j ) oR <_ ( F ` ( j + 1 ) ) ) ) | 
						
							| 101 | 100 | cbvralvw |  |-  ( A. n e. NN ( F ` n ) oR <_ ( F ` ( n + 1 ) ) <-> A. j e. NN ( F ` j ) oR <_ ( F ` ( j + 1 ) ) ) | 
						
							| 102 | 97 101 | sylib |  |-  ( ph -> A. j e. NN ( F ` j ) oR <_ ( F ` ( j + 1 ) ) ) | 
						
							| 103 | 102 | r19.21bi |  |-  ( ( ph /\ j e. NN ) -> ( F ` j ) oR <_ ( F ` ( j + 1 ) ) ) | 
						
							| 104 | 3 | ralrimiva |  |-  ( ph -> A. n e. NN ( F ` n ) : RR --> ( 0 [,) +oo ) ) | 
						
							| 105 | 98 | feq1d |  |-  ( n = j -> ( ( F ` n ) : RR --> ( 0 [,) +oo ) <-> ( F ` j ) : RR --> ( 0 [,) +oo ) ) ) | 
						
							| 106 | 105 | cbvralvw |  |-  ( A. n e. NN ( F ` n ) : RR --> ( 0 [,) +oo ) <-> A. j e. NN ( F ` j ) : RR --> ( 0 [,) +oo ) ) | 
						
							| 107 | 104 106 | sylib |  |-  ( ph -> A. j e. NN ( F ` j ) : RR --> ( 0 [,) +oo ) ) | 
						
							| 108 | 107 | r19.21bi |  |-  ( ( ph /\ j e. NN ) -> ( F ` j ) : RR --> ( 0 [,) +oo ) ) | 
						
							| 109 | 108 | ffnd |  |-  ( ( ph /\ j e. NN ) -> ( F ` j ) Fn RR ) | 
						
							| 110 |  | peano2nn |  |-  ( j e. NN -> ( j + 1 ) e. NN ) | 
						
							| 111 |  | fveq2 |  |-  ( n = ( j + 1 ) -> ( F ` n ) = ( F ` ( j + 1 ) ) ) | 
						
							| 112 | 111 | feq1d |  |-  ( n = ( j + 1 ) -> ( ( F ` n ) : RR --> ( 0 [,) +oo ) <-> ( F ` ( j + 1 ) ) : RR --> ( 0 [,) +oo ) ) ) | 
						
							| 113 | 112 | rspccva |  |-  ( ( A. n e. NN ( F ` n ) : RR --> ( 0 [,) +oo ) /\ ( j + 1 ) e. NN ) -> ( F ` ( j + 1 ) ) : RR --> ( 0 [,) +oo ) ) | 
						
							| 114 | 104 110 113 | syl2an |  |-  ( ( ph /\ j e. NN ) -> ( F ` ( j + 1 ) ) : RR --> ( 0 [,) +oo ) ) | 
						
							| 115 | 114 | ffnd |  |-  ( ( ph /\ j e. NN ) -> ( F ` ( j + 1 ) ) Fn RR ) | 
						
							| 116 | 31 | a1i |  |-  ( ( ph /\ j e. NN ) -> RR e. _V ) | 
						
							| 117 |  | eqidd |  |-  ( ( ( ph /\ j e. NN ) /\ x e. RR ) -> ( ( F ` j ) ` x ) = ( ( F ` j ) ` x ) ) | 
						
							| 118 |  | eqidd |  |-  ( ( ( ph /\ j e. NN ) /\ x e. RR ) -> ( ( F ` ( j + 1 ) ) ` x ) = ( ( F ` ( j + 1 ) ) ` x ) ) | 
						
							| 119 | 109 115 116 116 33 117 118 | ofrfval |  |-  ( ( ph /\ j e. NN ) -> ( ( F ` j ) oR <_ ( F ` ( j + 1 ) ) <-> A. x e. RR ( ( F ` j ) ` x ) <_ ( ( F ` ( j + 1 ) ) ` x ) ) ) | 
						
							| 120 | 103 119 | mpbid |  |-  ( ( ph /\ j e. NN ) -> A. x e. RR ( ( F ` j ) ` x ) <_ ( ( F ` ( j + 1 ) ) ` x ) ) | 
						
							| 121 | 120 | r19.21bi |  |-  ( ( ( ph /\ j e. NN ) /\ x e. RR ) -> ( ( F ` j ) ` x ) <_ ( ( F ` ( j + 1 ) ) ` x ) ) | 
						
							| 122 | 25 | ad2antrr |  |-  ( ( ( ph /\ j e. NN ) /\ x e. RR ) -> T e. RR ) | 
						
							| 123 | 50 | adantr |  |-  ( ( ph /\ j e. NN ) -> H : RR --> RR ) | 
						
							| 124 | 123 | ffvelcdmda |  |-  ( ( ( ph /\ j e. NN ) /\ x e. RR ) -> ( H ` x ) e. RR ) | 
						
							| 125 | 122 124 | remulcld |  |-  ( ( ( ph /\ j e. NN ) /\ x e. RR ) -> ( T x. ( H ` x ) ) e. RR ) | 
						
							| 126 |  | fss |  |-  ( ( ( F ` j ) : RR --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ RR ) -> ( F ` j ) : RR --> RR ) | 
						
							| 127 | 108 17 126 | sylancl |  |-  ( ( ph /\ j e. NN ) -> ( F ` j ) : RR --> RR ) | 
						
							| 128 | 127 | ffvelcdmda |  |-  ( ( ( ph /\ j e. NN ) /\ x e. RR ) -> ( ( F ` j ) ` x ) e. RR ) | 
						
							| 129 |  | fss |  |-  ( ( ( F ` ( j + 1 ) ) : RR --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ RR ) -> ( F ` ( j + 1 ) ) : RR --> RR ) | 
						
							| 130 | 114 17 129 | sylancl |  |-  ( ( ph /\ j e. NN ) -> ( F ` ( j + 1 ) ) : RR --> RR ) | 
						
							| 131 | 130 | ffvelcdmda |  |-  ( ( ( ph /\ j e. NN ) /\ x e. RR ) -> ( ( F ` ( j + 1 ) ) ` x ) e. RR ) | 
						
							| 132 |  | letr |  |-  ( ( ( T x. ( H ` x ) ) e. RR /\ ( ( F ` j ) ` x ) e. RR /\ ( ( F ` ( j + 1 ) ) ` x ) e. RR ) -> ( ( ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) /\ ( ( F ` j ) ` x ) <_ ( ( F ` ( j + 1 ) ) ` x ) ) -> ( T x. ( H ` x ) ) <_ ( ( F ` ( j + 1 ) ) ` x ) ) ) | 
						
							| 133 | 125 128 131 132 | syl3anc |  |-  ( ( ( ph /\ j e. NN ) /\ x e. RR ) -> ( ( ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) /\ ( ( F ` j ) ` x ) <_ ( ( F ` ( j + 1 ) ) ` x ) ) -> ( T x. ( H ` x ) ) <_ ( ( F ` ( j + 1 ) ) ` x ) ) ) | 
						
							| 134 | 121 133 | mpan2d |  |-  ( ( ( ph /\ j e. NN ) /\ x e. RR ) -> ( ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) -> ( T x. ( H ` x ) ) <_ ( ( F ` ( j + 1 ) ) ` x ) ) ) | 
						
							| 135 | 134 | ss2rabdv |  |-  ( ( ph /\ j e. NN ) -> { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) } C_ { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` ( j + 1 ) ) ` x ) } ) | 
						
							| 136 | 98 | fveq1d |  |-  ( n = j -> ( ( F ` n ) ` x ) = ( ( F ` j ) ` x ) ) | 
						
							| 137 | 136 | breq2d |  |-  ( n = j -> ( ( T x. ( H ` x ) ) <_ ( ( F ` n ) ` x ) <-> ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) ) ) | 
						
							| 138 | 137 | rabbidv |  |-  ( n = j -> { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` n ) ` x ) } = { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) } ) | 
						
							| 139 | 31 | rabex |  |-  { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) } e. _V | 
						
							| 140 | 138 11 139 | fvmpt |  |-  ( j e. NN -> ( A ` j ) = { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) } ) | 
						
							| 141 | 140 | adantl |  |-  ( ( ph /\ j e. NN ) -> ( A ` j ) = { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) } ) | 
						
							| 142 | 110 | adantl |  |-  ( ( ph /\ j e. NN ) -> ( j + 1 ) e. NN ) | 
						
							| 143 | 111 | fveq1d |  |-  ( n = ( j + 1 ) -> ( ( F ` n ) ` x ) = ( ( F ` ( j + 1 ) ) ` x ) ) | 
						
							| 144 | 143 | breq2d |  |-  ( n = ( j + 1 ) -> ( ( T x. ( H ` x ) ) <_ ( ( F ` n ) ` x ) <-> ( T x. ( H ` x ) ) <_ ( ( F ` ( j + 1 ) ) ` x ) ) ) | 
						
							| 145 | 144 | rabbidv |  |-  ( n = ( j + 1 ) -> { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` n ) ` x ) } = { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` ( j + 1 ) ) ` x ) } ) | 
						
							| 146 | 31 | rabex |  |-  { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` ( j + 1 ) ) ` x ) } e. _V | 
						
							| 147 | 145 11 146 | fvmpt |  |-  ( ( j + 1 ) e. NN -> ( A ` ( j + 1 ) ) = { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` ( j + 1 ) ) ` x ) } ) | 
						
							| 148 | 142 147 | syl |  |-  ( ( ph /\ j e. NN ) -> ( A ` ( j + 1 ) ) = { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` ( j + 1 ) ) ` x ) } ) | 
						
							| 149 | 135 141 148 | 3sstr4d |  |-  ( ( ph /\ j e. NN ) -> ( A ` j ) C_ ( A ` ( j + 1 ) ) ) | 
						
							| 150 | 66 | adantrr |  |-  ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> ( T x. ( H ` x ) ) e. RR ) | 
						
							| 151 | 57 | adantrr |  |-  ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> ( H ` x ) e. RR ) | 
						
							| 152 | 63 | an32s |  |-  ( ( ( ph /\ x e. RR ) /\ n e. NN ) -> ( ( F ` n ) ` x ) e. RR ) | 
						
							| 153 | 152 | fmpttd |  |-  ( ( ph /\ x e. RR ) -> ( n e. NN |-> ( ( F ` n ) ` x ) ) : NN --> RR ) | 
						
							| 154 | 153 | frnd |  |-  ( ( ph /\ x e. RR ) -> ran ( n e. NN |-> ( ( F ` n ) ` x ) ) C_ RR ) | 
						
							| 155 |  | 1nn |  |-  1 e. NN | 
						
							| 156 |  | eqid |  |-  ( n e. NN |-> ( ( F ` n ) ` x ) ) = ( n e. NN |-> ( ( F ` n ) ` x ) ) | 
						
							| 157 | 156 152 | dmmptd |  |-  ( ( ph /\ x e. RR ) -> dom ( n e. NN |-> ( ( F ` n ) ` x ) ) = NN ) | 
						
							| 158 | 155 157 | eleqtrrid |  |-  ( ( ph /\ x e. RR ) -> 1 e. dom ( n e. NN |-> ( ( F ` n ) ` x ) ) ) | 
						
							| 159 | 158 | ne0d |  |-  ( ( ph /\ x e. RR ) -> dom ( n e. NN |-> ( ( F ` n ) ` x ) ) =/= (/) ) | 
						
							| 160 |  | dm0rn0 |  |-  ( dom ( n e. NN |-> ( ( F ` n ) ` x ) ) = (/) <-> ran ( n e. NN |-> ( ( F ` n ) ` x ) ) = (/) ) | 
						
							| 161 | 160 | necon3bii |  |-  ( dom ( n e. NN |-> ( ( F ` n ) ` x ) ) =/= (/) <-> ran ( n e. NN |-> ( ( F ` n ) ` x ) ) =/= (/) ) | 
						
							| 162 | 159 161 | sylib |  |-  ( ( ph /\ x e. RR ) -> ran ( n e. NN |-> ( ( F ` n ) ` x ) ) =/= (/) ) | 
						
							| 163 | 153 | ffnd |  |-  ( ( ph /\ x e. RR ) -> ( n e. NN |-> ( ( F ` n ) ` x ) ) Fn NN ) | 
						
							| 164 |  | breq1 |  |-  ( z = ( ( n e. NN |-> ( ( F ` n ) ` x ) ) ` m ) -> ( z <_ y <-> ( ( n e. NN |-> ( ( F ` n ) ` x ) ) ` m ) <_ y ) ) | 
						
							| 165 | 164 | ralrn |  |-  ( ( n e. NN |-> ( ( F ` n ) ` x ) ) Fn NN -> ( A. z e. ran ( n e. NN |-> ( ( F ` n ) ` x ) ) z <_ y <-> A. m e. NN ( ( n e. NN |-> ( ( F ` n ) ` x ) ) ` m ) <_ y ) ) | 
						
							| 166 | 163 165 | syl |  |-  ( ( ph /\ x e. RR ) -> ( A. z e. ran ( n e. NN |-> ( ( F ` n ) ` x ) ) z <_ y <-> A. m e. NN ( ( n e. NN |-> ( ( F ` n ) ` x ) ) ` m ) <_ y ) ) | 
						
							| 167 |  | fveq2 |  |-  ( n = m -> ( F ` n ) = ( F ` m ) ) | 
						
							| 168 | 167 | fveq1d |  |-  ( n = m -> ( ( F ` n ) ` x ) = ( ( F ` m ) ` x ) ) | 
						
							| 169 |  | fvex |  |-  ( ( F ` m ) ` x ) e. _V | 
						
							| 170 | 168 156 169 | fvmpt |  |-  ( m e. NN -> ( ( n e. NN |-> ( ( F ` n ) ` x ) ) ` m ) = ( ( F ` m ) ` x ) ) | 
						
							| 171 | 170 | breq1d |  |-  ( m e. NN -> ( ( ( n e. NN |-> ( ( F ` n ) ` x ) ) ` m ) <_ y <-> ( ( F ` m ) ` x ) <_ y ) ) | 
						
							| 172 | 171 | ralbiia |  |-  ( A. m e. NN ( ( n e. NN |-> ( ( F ` n ) ` x ) ) ` m ) <_ y <-> A. m e. NN ( ( F ` m ) ` x ) <_ y ) | 
						
							| 173 | 168 | breq1d |  |-  ( n = m -> ( ( ( F ` n ) ` x ) <_ y <-> ( ( F ` m ) ` x ) <_ y ) ) | 
						
							| 174 | 173 | cbvralvw |  |-  ( A. n e. NN ( ( F ` n ) ` x ) <_ y <-> A. m e. NN ( ( F ` m ) ` x ) <_ y ) | 
						
							| 175 | 172 174 | bitr4i |  |-  ( A. m e. NN ( ( n e. NN |-> ( ( F ` n ) ` x ) ) ` m ) <_ y <-> A. n e. NN ( ( F ` n ) ` x ) <_ y ) | 
						
							| 176 | 166 175 | bitrdi |  |-  ( ( ph /\ x e. RR ) -> ( A. z e. ran ( n e. NN |-> ( ( F ` n ) ` x ) ) z <_ y <-> A. n e. NN ( ( F ` n ) ` x ) <_ y ) ) | 
						
							| 177 | 176 | rexbidv |  |-  ( ( ph /\ x e. RR ) -> ( E. y e. RR A. z e. ran ( n e. NN |-> ( ( F ` n ) ` x ) ) z <_ y <-> E. y e. RR A. n e. NN ( ( F ` n ) ` x ) <_ y ) ) | 
						
							| 178 | 5 177 | mpbird |  |-  ( ( ph /\ x e. RR ) -> E. y e. RR A. z e. ran ( n e. NN |-> ( ( F ` n ) ` x ) ) z <_ y ) | 
						
							| 179 | 154 162 178 | suprcld |  |-  ( ( ph /\ x e. RR ) -> sup ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) , RR , < ) e. RR ) | 
						
							| 180 | 179 | adantrr |  |-  ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> sup ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) , RR , < ) e. RR ) | 
						
							| 181 | 24 | simp3d |  |-  ( ph -> T < 1 ) | 
						
							| 182 | 181 | adantr |  |-  ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> T < 1 ) | 
						
							| 183 | 25 | adantr |  |-  ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> T e. RR ) | 
						
							| 184 |  | 1red |  |-  ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> 1 e. RR ) | 
						
							| 185 |  | simprr |  |-  ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> 0 < ( H ` x ) ) | 
						
							| 186 |  | ltmul1 |  |-  ( ( T e. RR /\ 1 e. RR /\ ( ( H ` x ) e. RR /\ 0 < ( H ` x ) ) ) -> ( T < 1 <-> ( T x. ( H ` x ) ) < ( 1 x. ( H ` x ) ) ) ) | 
						
							| 187 | 183 184 151 185 186 | syl112anc |  |-  ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> ( T < 1 <-> ( T x. ( H ` x ) ) < ( 1 x. ( H ` x ) ) ) ) | 
						
							| 188 | 182 187 | mpbid |  |-  ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> ( T x. ( H ` x ) ) < ( 1 x. ( H ` x ) ) ) | 
						
							| 189 | 151 | recnd |  |-  ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> ( H ` x ) e. CC ) | 
						
							| 190 | 189 | mullidd |  |-  ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> ( 1 x. ( H ` x ) ) = ( H ` x ) ) | 
						
							| 191 | 188 190 | breqtrd |  |-  ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> ( T x. ( H ` x ) ) < ( H ` x ) ) | 
						
							| 192 | 179 1 | fmptd |  |-  ( ph -> G : RR --> RR ) | 
						
							| 193 | 192 | ffnd |  |-  ( ph -> G Fn RR ) | 
						
							| 194 | 31 | a1i |  |-  ( ph -> RR e. _V ) | 
						
							| 195 |  | eqidd |  |-  ( ( ph /\ y e. RR ) -> ( H ` y ) = ( H ` y ) ) | 
						
							| 196 |  | fveq2 |  |-  ( x = y -> ( ( F ` n ) ` x ) = ( ( F ` n ) ` y ) ) | 
						
							| 197 | 196 | mpteq2dv |  |-  ( x = y -> ( n e. NN |-> ( ( F ` n ) ` x ) ) = ( n e. NN |-> ( ( F ` n ) ` y ) ) ) | 
						
							| 198 | 197 | rneqd |  |-  ( x = y -> ran ( n e. NN |-> ( ( F ` n ) ` x ) ) = ran ( n e. NN |-> ( ( F ` n ) ` y ) ) ) | 
						
							| 199 | 198 | supeq1d |  |-  ( x = y -> sup ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) , RR , < ) = sup ( ran ( n e. NN |-> ( ( F ` n ) ` y ) ) , RR , < ) ) | 
						
							| 200 |  | ltso |  |-  < Or RR | 
						
							| 201 | 200 | supex |  |-  sup ( ran ( n e. NN |-> ( ( F ` n ) ` y ) ) , RR , < ) e. _V | 
						
							| 202 | 199 1 201 | fvmpt |  |-  ( y e. RR -> ( G ` y ) = sup ( ran ( n e. NN |-> ( ( F ` n ) ` y ) ) , RR , < ) ) | 
						
							| 203 | 202 | adantl |  |-  ( ( ph /\ y e. RR ) -> ( G ` y ) = sup ( ran ( n e. NN |-> ( ( F ` n ) ` y ) ) , RR , < ) ) | 
						
							| 204 | 51 193 194 194 33 195 203 | ofrfval |  |-  ( ph -> ( H oR <_ G <-> A. y e. RR ( H ` y ) <_ sup ( ran ( n e. NN |-> ( ( F ` n ) ` y ) ) , RR , < ) ) ) | 
						
							| 205 | 9 204 | mpbid |  |-  ( ph -> A. y e. RR ( H ` y ) <_ sup ( ran ( n e. NN |-> ( ( F ` n ) ` y ) ) , RR , < ) ) | 
						
							| 206 |  | fveq2 |  |-  ( x = y -> ( H ` x ) = ( H ` y ) ) | 
						
							| 207 | 206 199 | breq12d |  |-  ( x = y -> ( ( H ` x ) <_ sup ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) , RR , < ) <-> ( H ` y ) <_ sup ( ran ( n e. NN |-> ( ( F ` n ) ` y ) ) , RR , < ) ) ) | 
						
							| 208 | 207 | cbvralvw |  |-  ( A. x e. RR ( H ` x ) <_ sup ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) , RR , < ) <-> A. y e. RR ( H ` y ) <_ sup ( ran ( n e. NN |-> ( ( F ` n ) ` y ) ) , RR , < ) ) | 
						
							| 209 | 205 208 | sylibr |  |-  ( ph -> A. x e. RR ( H ` x ) <_ sup ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) , RR , < ) ) | 
						
							| 210 | 209 | r19.21bi |  |-  ( ( ph /\ x e. RR ) -> ( H ` x ) <_ sup ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) , RR , < ) ) | 
						
							| 211 | 210 | adantrr |  |-  ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> ( H ` x ) <_ sup ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) , RR , < ) ) | 
						
							| 212 | 150 151 180 191 211 | ltletrd |  |-  ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> ( T x. ( H ` x ) ) < sup ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) , RR , < ) ) | 
						
							| 213 | 154 | adantrr |  |-  ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> ran ( n e. NN |-> ( ( F ` n ) ` x ) ) C_ RR ) | 
						
							| 214 | 162 | adantrr |  |-  ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> ran ( n e. NN |-> ( ( F ` n ) ` x ) ) =/= (/) ) | 
						
							| 215 | 178 | adantrr |  |-  ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> E. y e. RR A. z e. ran ( n e. NN |-> ( ( F ` n ) ` x ) ) z <_ y ) | 
						
							| 216 |  | suprlub |  |-  ( ( ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) C_ RR /\ ran ( n e. NN |-> ( ( F ` n ) ` x ) ) =/= (/) /\ E. y e. RR A. z e. ran ( n e. NN |-> ( ( F ` n ) ` x ) ) z <_ y ) /\ ( T x. ( H ` x ) ) e. RR ) -> ( ( T x. ( H ` x ) ) < sup ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) , RR , < ) <-> E. w e. ran ( n e. NN |-> ( ( F ` n ) ` x ) ) ( T x. ( H ` x ) ) < w ) ) | 
						
							| 217 | 213 214 215 150 216 | syl31anc |  |-  ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> ( ( T x. ( H ` x ) ) < sup ( ran ( n e. NN |-> ( ( F ` n ) ` x ) ) , RR , < ) <-> E. w e. ran ( n e. NN |-> ( ( F ` n ) ` x ) ) ( T x. ( H ` x ) ) < w ) ) | 
						
							| 218 | 212 217 | mpbid |  |-  ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> E. w e. ran ( n e. NN |-> ( ( F ` n ) ` x ) ) ( T x. ( H ` x ) ) < w ) | 
						
							| 219 | 163 | adantrr |  |-  ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> ( n e. NN |-> ( ( F ` n ) ` x ) ) Fn NN ) | 
						
							| 220 |  | breq2 |  |-  ( w = ( ( n e. NN |-> ( ( F ` n ) ` x ) ) ` j ) -> ( ( T x. ( H ` x ) ) < w <-> ( T x. ( H ` x ) ) < ( ( n e. NN |-> ( ( F ` n ) ` x ) ) ` j ) ) ) | 
						
							| 221 | 220 | rexrn |  |-  ( ( n e. NN |-> ( ( F ` n ) ` x ) ) Fn NN -> ( E. w e. ran ( n e. NN |-> ( ( F ` n ) ` x ) ) ( T x. ( H ` x ) ) < w <-> E. j e. NN ( T x. ( H ` x ) ) < ( ( n e. NN |-> ( ( F ` n ) ` x ) ) ` j ) ) ) | 
						
							| 222 | 219 221 | syl |  |-  ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> ( E. w e. ran ( n e. NN |-> ( ( F ` n ) ` x ) ) ( T x. ( H ` x ) ) < w <-> E. j e. NN ( T x. ( H ` x ) ) < ( ( n e. NN |-> ( ( F ` n ) ` x ) ) ` j ) ) ) | 
						
							| 223 |  | fvex |  |-  ( ( F ` j ) ` x ) e. _V | 
						
							| 224 | 136 156 223 | fvmpt |  |-  ( j e. NN -> ( ( n e. NN |-> ( ( F ` n ) ` x ) ) ` j ) = ( ( F ` j ) ` x ) ) | 
						
							| 225 | 224 | breq2d |  |-  ( j e. NN -> ( ( T x. ( H ` x ) ) < ( ( n e. NN |-> ( ( F ` n ) ` x ) ) ` j ) <-> ( T x. ( H ` x ) ) < ( ( F ` j ) ` x ) ) ) | 
						
							| 226 | 225 | rexbiia |  |-  ( E. j e. NN ( T x. ( H ` x ) ) < ( ( n e. NN |-> ( ( F ` n ) ` x ) ) ` j ) <-> E. j e. NN ( T x. ( H ` x ) ) < ( ( F ` j ) ` x ) ) | 
						
							| 227 | 222 226 | bitrdi |  |-  ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> ( E. w e. ran ( n e. NN |-> ( ( F ` n ) ` x ) ) ( T x. ( H ` x ) ) < w <-> E. j e. NN ( T x. ( H ` x ) ) < ( ( F ` j ) ` x ) ) ) | 
						
							| 228 | 218 227 | mpbid |  |-  ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> E. j e. NN ( T x. ( H ` x ) ) < ( ( F ` j ) ` x ) ) | 
						
							| 229 | 183 151 | remulcld |  |-  ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> ( T x. ( H ` x ) ) e. RR ) | 
						
							| 230 | 108 | adantlr |  |-  ( ( ( ph /\ x e. RR ) /\ j e. NN ) -> ( F ` j ) : RR --> ( 0 [,) +oo ) ) | 
						
							| 231 |  | simplr |  |-  ( ( ( ph /\ x e. RR ) /\ j e. NN ) -> x e. RR ) | 
						
							| 232 | 230 231 | ffvelcdmd |  |-  ( ( ( ph /\ x e. RR ) /\ j e. NN ) -> ( ( F ` j ) ` x ) e. ( 0 [,) +oo ) ) | 
						
							| 233 |  | elrege0 |  |-  ( ( ( F ` j ) ` x ) e. ( 0 [,) +oo ) <-> ( ( ( F ` j ) ` x ) e. RR /\ 0 <_ ( ( F ` j ) ` x ) ) ) | 
						
							| 234 | 232 233 | sylib |  |-  ( ( ( ph /\ x e. RR ) /\ j e. NN ) -> ( ( ( F ` j ) ` x ) e. RR /\ 0 <_ ( ( F ` j ) ` x ) ) ) | 
						
							| 235 | 234 | simpld |  |-  ( ( ( ph /\ x e. RR ) /\ j e. NN ) -> ( ( F ` j ) ` x ) e. RR ) | 
						
							| 236 | 235 | adantlrr |  |-  ( ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) /\ j e. NN ) -> ( ( F ` j ) ` x ) e. RR ) | 
						
							| 237 |  | ltle |  |-  ( ( ( T x. ( H ` x ) ) e. RR /\ ( ( F ` j ) ` x ) e. RR ) -> ( ( T x. ( H ` x ) ) < ( ( F ` j ) ` x ) -> ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) ) ) | 
						
							| 238 | 229 236 237 | syl2an2r |  |-  ( ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) /\ j e. NN ) -> ( ( T x. ( H ` x ) ) < ( ( F ` j ) ` x ) -> ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) ) ) | 
						
							| 239 | 238 | reximdva |  |-  ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> ( E. j e. NN ( T x. ( H ` x ) ) < ( ( F ` j ) ` x ) -> E. j e. NN ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) ) ) | 
						
							| 240 | 228 239 | mpd |  |-  ( ( ph /\ ( x e. RR /\ 0 < ( H ` x ) ) ) -> E. j e. NN ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) ) | 
						
							| 241 | 240 | anassrs |  |-  ( ( ( ph /\ x e. RR ) /\ 0 < ( H ` x ) ) -> E. j e. NN ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) ) | 
						
							| 242 | 155 | ne0ii |  |-  NN =/= (/) | 
						
							| 243 | 66 | adantrr |  |-  ( ( ph /\ ( x e. RR /\ ( H ` x ) <_ 0 ) ) -> ( T x. ( H ` x ) ) e. RR ) | 
						
							| 244 | 243 | adantr |  |-  ( ( ( ph /\ ( x e. RR /\ ( H ` x ) <_ 0 ) ) /\ j e. NN ) -> ( T x. ( H ` x ) ) e. RR ) | 
						
							| 245 |  | 0red |  |-  ( ( ( ph /\ ( x e. RR /\ ( H ` x ) <_ 0 ) ) /\ j e. NN ) -> 0 e. RR ) | 
						
							| 246 | 234 | adantlrr |  |-  ( ( ( ph /\ ( x e. RR /\ ( H ` x ) <_ 0 ) ) /\ j e. NN ) -> ( ( ( F ` j ) ` x ) e. RR /\ 0 <_ ( ( F ` j ) ` x ) ) ) | 
						
							| 247 | 246 | simpld |  |-  ( ( ( ph /\ ( x e. RR /\ ( H ` x ) <_ 0 ) ) /\ j e. NN ) -> ( ( F ` j ) ` x ) e. RR ) | 
						
							| 248 |  | simplrr |  |-  ( ( ( ph /\ ( x e. RR /\ ( H ` x ) <_ 0 ) ) /\ j e. NN ) -> ( H ` x ) <_ 0 ) | 
						
							| 249 | 57 | adantrr |  |-  ( ( ph /\ ( x e. RR /\ ( H ` x ) <_ 0 ) ) -> ( H ` x ) e. RR ) | 
						
							| 250 | 249 | adantr |  |-  ( ( ( ph /\ ( x e. RR /\ ( H ` x ) <_ 0 ) ) /\ j e. NN ) -> ( H ` x ) e. RR ) | 
						
							| 251 | 25 | ad2antrr |  |-  ( ( ( ph /\ ( x e. RR /\ ( H ` x ) <_ 0 ) ) /\ j e. NN ) -> T e. RR ) | 
						
							| 252 | 24 | simp2d |  |-  ( ph -> 0 < T ) | 
						
							| 253 | 252 | ad2antrr |  |-  ( ( ( ph /\ ( x e. RR /\ ( H ` x ) <_ 0 ) ) /\ j e. NN ) -> 0 < T ) | 
						
							| 254 |  | lemul2 |  |-  ( ( ( H ` x ) e. RR /\ 0 e. RR /\ ( T e. RR /\ 0 < T ) ) -> ( ( H ` x ) <_ 0 <-> ( T x. ( H ` x ) ) <_ ( T x. 0 ) ) ) | 
						
							| 255 | 250 245 251 253 254 | syl112anc |  |-  ( ( ( ph /\ ( x e. RR /\ ( H ` x ) <_ 0 ) ) /\ j e. NN ) -> ( ( H ` x ) <_ 0 <-> ( T x. ( H ` x ) ) <_ ( T x. 0 ) ) ) | 
						
							| 256 | 248 255 | mpbid |  |-  ( ( ( ph /\ ( x e. RR /\ ( H ` x ) <_ 0 ) ) /\ j e. NN ) -> ( T x. ( H ` x ) ) <_ ( T x. 0 ) ) | 
						
							| 257 | 251 | recnd |  |-  ( ( ( ph /\ ( x e. RR /\ ( H ` x ) <_ 0 ) ) /\ j e. NN ) -> T e. CC ) | 
						
							| 258 | 257 | mul01d |  |-  ( ( ( ph /\ ( x e. RR /\ ( H ` x ) <_ 0 ) ) /\ j e. NN ) -> ( T x. 0 ) = 0 ) | 
						
							| 259 | 256 258 | breqtrd |  |-  ( ( ( ph /\ ( x e. RR /\ ( H ` x ) <_ 0 ) ) /\ j e. NN ) -> ( T x. ( H ` x ) ) <_ 0 ) | 
						
							| 260 | 246 | simprd |  |-  ( ( ( ph /\ ( x e. RR /\ ( H ` x ) <_ 0 ) ) /\ j e. NN ) -> 0 <_ ( ( F ` j ) ` x ) ) | 
						
							| 261 | 244 245 247 259 260 | letrd |  |-  ( ( ( ph /\ ( x e. RR /\ ( H ` x ) <_ 0 ) ) /\ j e. NN ) -> ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) ) | 
						
							| 262 | 261 | ralrimiva |  |-  ( ( ph /\ ( x e. RR /\ ( H ` x ) <_ 0 ) ) -> A. j e. NN ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) ) | 
						
							| 263 |  | r19.2z |  |-  ( ( NN =/= (/) /\ A. j e. NN ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) ) -> E. j e. NN ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) ) | 
						
							| 264 | 242 262 263 | sylancr |  |-  ( ( ph /\ ( x e. RR /\ ( H ` x ) <_ 0 ) ) -> E. j e. NN ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) ) | 
						
							| 265 | 264 | anassrs |  |-  ( ( ( ph /\ x e. RR ) /\ ( H ` x ) <_ 0 ) -> E. j e. NN ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) ) | 
						
							| 266 |  | 0red |  |-  ( ( ph /\ x e. RR ) -> 0 e. RR ) | 
						
							| 267 | 241 265 266 57 | ltlecasei |  |-  ( ( ph /\ x e. RR ) -> E. j e. NN ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) ) | 
						
							| 268 | 267 | ralrimiva |  |-  ( ph -> A. x e. RR E. j e. NN ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) ) | 
						
							| 269 |  | rabid2 |  |-  ( RR = { x e. RR | E. j e. NN ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) } <-> A. x e. RR E. j e. NN ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) ) | 
						
							| 270 | 268 269 | sylibr |  |-  ( ph -> RR = { x e. RR | E. j e. NN ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) } ) | 
						
							| 271 |  | iunrab |  |-  U_ j e. NN { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) } = { x e. RR | E. j e. NN ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) } | 
						
							| 272 | 270 271 | eqtr4di |  |-  ( ph -> RR = U_ j e. NN { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) } ) | 
						
							| 273 | 141 | iuneq2dv |  |-  ( ph -> U_ j e. NN ( A ` j ) = U_ j e. NN { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` j ) ` x ) } ) | 
						
							| 274 | 96 | ffnd |  |-  ( ph -> A Fn NN ) | 
						
							| 275 |  | fniunfv |  |-  ( A Fn NN -> U_ j e. NN ( A ` j ) = U. ran A ) | 
						
							| 276 | 274 275 | syl |  |-  ( ph -> U_ j e. NN ( A ` j ) = U. ran A ) | 
						
							| 277 | 272 273 276 | 3eqtr2rd |  |-  ( ph -> U. ran A = RR ) | 
						
							| 278 |  | eqid |  |-  ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) = ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) | 
						
							| 279 | 96 149 277 8 278 | itg1climres |  |-  ( ph -> ( j e. NN |-> ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ~~> ( S.1 ` H ) ) | 
						
							| 280 |  | nnex |  |-  NN e. _V | 
						
							| 281 | 280 | mptex |  |-  ( j e. NN |-> ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ) e. _V | 
						
							| 282 | 281 | a1i |  |-  ( ph -> ( j e. NN |-> ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ) e. _V ) | 
						
							| 283 |  | fveq2 |  |-  ( j = k -> ( A ` j ) = ( A ` k ) ) | 
						
							| 284 | 283 | eleq2d |  |-  ( j = k -> ( x e. ( A ` j ) <-> x e. ( A ` k ) ) ) | 
						
							| 285 | 284 | ifbid |  |-  ( j = k -> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) = if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) | 
						
							| 286 | 285 | mpteq2dv |  |-  ( j = k -> ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) = ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) | 
						
							| 287 | 286 | fveq2d |  |-  ( j = k -> ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) = ( S.1 ` ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) ) | 
						
							| 288 |  | eqid |  |-  ( j e. NN |-> ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) = ( j e. NN |-> ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) | 
						
							| 289 |  | fvex |  |-  ( S.1 ` ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) e. _V | 
						
							| 290 | 287 288 289 | fvmpt |  |-  ( k e. NN -> ( ( j e. NN |-> ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ` k ) = ( S.1 ` ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) ) | 
						
							| 291 | 290 | adantl |  |-  ( ( ph /\ k e. NN ) -> ( ( j e. NN |-> ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ` k ) = ( S.1 ` ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) ) | 
						
							| 292 | 96 | ffvelcdmda |  |-  ( ( ph /\ k e. NN ) -> ( A ` k ) e. dom vol ) | 
						
							| 293 |  | eqid |  |-  ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) = ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) | 
						
							| 294 | 293 | i1fres |  |-  ( ( H e. dom S.1 /\ ( A ` k ) e. dom vol ) -> ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) e. dom S.1 ) | 
						
							| 295 | 8 292 294 | syl2an2r |  |-  ( ( ph /\ k e. NN ) -> ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) e. dom S.1 ) | 
						
							| 296 |  | itg1cl |  |-  ( ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) e. dom S.1 -> ( S.1 ` ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) e. RR ) | 
						
							| 297 | 295 296 | syl |  |-  ( ( ph /\ k e. NN ) -> ( S.1 ` ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) e. RR ) | 
						
							| 298 | 291 297 | eqeltrd |  |-  ( ( ph /\ k e. NN ) -> ( ( j e. NN |-> ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ` k ) e. RR ) | 
						
							| 299 | 298 | recnd |  |-  ( ( ph /\ k e. NN ) -> ( ( j e. NN |-> ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ` k ) e. CC ) | 
						
							| 300 | 287 | oveq2d |  |-  ( j = k -> ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) = ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) ) ) | 
						
							| 301 |  | eqid |  |-  ( j e. NN |-> ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ) = ( j e. NN |-> ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ) | 
						
							| 302 |  | ovex |  |-  ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) ) e. _V | 
						
							| 303 | 300 301 302 | fvmpt |  |-  ( k e. NN -> ( ( j e. NN |-> ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ) ` k ) = ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) ) ) | 
						
							| 304 | 290 | oveq2d |  |-  ( k e. NN -> ( T x. ( ( j e. NN |-> ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ` k ) ) = ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) ) ) | 
						
							| 305 | 303 304 | eqtr4d |  |-  ( k e. NN -> ( ( j e. NN |-> ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ) ` k ) = ( T x. ( ( j e. NN |-> ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ` k ) ) ) | 
						
							| 306 | 305 | adantl |  |-  ( ( ph /\ k e. NN ) -> ( ( j e. NN |-> ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ) ` k ) = ( T x. ( ( j e. NN |-> ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ` k ) ) ) | 
						
							| 307 | 12 13 279 55 282 299 306 | climmulc2 |  |-  ( ph -> ( j e. NN |-> ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ) ~~> ( T x. ( S.1 ` H ) ) ) | 
						
							| 308 |  | icossicc |  |-  ( 0 [,) +oo ) C_ ( 0 [,] +oo ) | 
						
							| 309 |  | fss |  |-  ( ( ( F ` n ) : RR --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ ( 0 [,] +oo ) ) -> ( F ` n ) : RR --> ( 0 [,] +oo ) ) | 
						
							| 310 | 3 308 309 | sylancl |  |-  ( ( ph /\ n e. NN ) -> ( F ` n ) : RR --> ( 0 [,] +oo ) ) | 
						
							| 311 | 10 | adantr |  |-  ( ( ph /\ n e. NN ) -> S e. RR ) | 
						
							| 312 |  | itg2cl |  |-  ( ( F ` n ) : RR --> ( 0 [,] +oo ) -> ( S.2 ` ( F ` n ) ) e. RR* ) | 
						
							| 313 | 310 312 | syl |  |-  ( ( ph /\ n e. NN ) -> ( S.2 ` ( F ` n ) ) e. RR* ) | 
						
							| 314 | 313 | fmpttd |  |-  ( ph -> ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) : NN --> RR* ) | 
						
							| 315 | 314 | frnd |  |-  ( ph -> ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) C_ RR* ) | 
						
							| 316 |  | fvex |  |-  ( S.2 ` ( F ` n ) ) e. _V | 
						
							| 317 | 316 | elabrex |  |-  ( n e. NN -> ( S.2 ` ( F ` n ) ) e. { x | E. n e. NN x = ( S.2 ` ( F ` n ) ) } ) | 
						
							| 318 | 317 | adantl |  |-  ( ( ph /\ n e. NN ) -> ( S.2 ` ( F ` n ) ) e. { x | E. n e. NN x = ( S.2 ` ( F ` n ) ) } ) | 
						
							| 319 |  | eqid |  |-  ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) = ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) | 
						
							| 320 | 319 | rnmpt |  |-  ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) = { x | E. n e. NN x = ( S.2 ` ( F ` n ) ) } | 
						
							| 321 | 318 320 | eleqtrrdi |  |-  ( ( ph /\ n e. NN ) -> ( S.2 ` ( F ` n ) ) e. ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ) | 
						
							| 322 |  | supxrub |  |-  ( ( ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) C_ RR* /\ ( S.2 ` ( F ` n ) ) e. ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ) -> ( S.2 ` ( F ` n ) ) <_ sup ( ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) , RR* , < ) ) | 
						
							| 323 | 315 321 322 | syl2an2r |  |-  ( ( ph /\ n e. NN ) -> ( S.2 ` ( F ` n ) ) <_ sup ( ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) , RR* , < ) ) | 
						
							| 324 | 323 6 | breqtrrdi |  |-  ( ( ph /\ n e. NN ) -> ( S.2 ` ( F ` n ) ) <_ S ) | 
						
							| 325 |  | itg2lecl |  |-  ( ( ( F ` n ) : RR --> ( 0 [,] +oo ) /\ S e. RR /\ ( S.2 ` ( F ` n ) ) <_ S ) -> ( S.2 ` ( F ` n ) ) e. RR ) | 
						
							| 326 | 310 311 324 325 | syl3anc |  |-  ( ( ph /\ n e. NN ) -> ( S.2 ` ( F ` n ) ) e. RR ) | 
						
							| 327 | 326 | fmpttd |  |-  ( ph -> ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) : NN --> RR ) | 
						
							| 328 | 310 | ralrimiva |  |-  ( ph -> A. n e. NN ( F ` n ) : RR --> ( 0 [,] +oo ) ) | 
						
							| 329 |  | fveq2 |  |-  ( n = k -> ( F ` n ) = ( F ` k ) ) | 
						
							| 330 | 329 | feq1d |  |-  ( n = k -> ( ( F ` n ) : RR --> ( 0 [,] +oo ) <-> ( F ` k ) : RR --> ( 0 [,] +oo ) ) ) | 
						
							| 331 | 330 | cbvralvw |  |-  ( A. n e. NN ( F ` n ) : RR --> ( 0 [,] +oo ) <-> A. k e. NN ( F ` k ) : RR --> ( 0 [,] +oo ) ) | 
						
							| 332 | 328 331 | sylib |  |-  ( ph -> A. k e. NN ( F ` k ) : RR --> ( 0 [,] +oo ) ) | 
						
							| 333 |  | peano2nn |  |-  ( n e. NN -> ( n + 1 ) e. NN ) | 
						
							| 334 |  | fveq2 |  |-  ( k = ( n + 1 ) -> ( F ` k ) = ( F ` ( n + 1 ) ) ) | 
						
							| 335 | 334 | feq1d |  |-  ( k = ( n + 1 ) -> ( ( F ` k ) : RR --> ( 0 [,] +oo ) <-> ( F ` ( n + 1 ) ) : RR --> ( 0 [,] +oo ) ) ) | 
						
							| 336 | 335 | rspccva |  |-  ( ( A. k e. NN ( F ` k ) : RR --> ( 0 [,] +oo ) /\ ( n + 1 ) e. NN ) -> ( F ` ( n + 1 ) ) : RR --> ( 0 [,] +oo ) ) | 
						
							| 337 | 332 333 336 | syl2an |  |-  ( ( ph /\ n e. NN ) -> ( F ` ( n + 1 ) ) : RR --> ( 0 [,] +oo ) ) | 
						
							| 338 |  | itg2le |  |-  ( ( ( F ` n ) : RR --> ( 0 [,] +oo ) /\ ( F ` ( n + 1 ) ) : RR --> ( 0 [,] +oo ) /\ ( F ` n ) oR <_ ( F ` ( n + 1 ) ) ) -> ( S.2 ` ( F ` n ) ) <_ ( S.2 ` ( F ` ( n + 1 ) ) ) ) | 
						
							| 339 | 310 337 4 338 | syl3anc |  |-  ( ( ph /\ n e. NN ) -> ( S.2 ` ( F ` n ) ) <_ ( S.2 ` ( F ` ( n + 1 ) ) ) ) | 
						
							| 340 | 339 | ralrimiva |  |-  ( ph -> A. n e. NN ( S.2 ` ( F ` n ) ) <_ ( S.2 ` ( F ` ( n + 1 ) ) ) ) | 
						
							| 341 |  | 2fveq3 |  |-  ( n = k -> ( S.2 ` ( F ` n ) ) = ( S.2 ` ( F ` k ) ) ) | 
						
							| 342 |  | fvex |  |-  ( S.2 ` ( F ` k ) ) e. _V | 
						
							| 343 | 341 319 342 | fvmpt |  |-  ( k e. NN -> ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` k ) = ( S.2 ` ( F ` k ) ) ) | 
						
							| 344 |  | peano2nn |  |-  ( k e. NN -> ( k + 1 ) e. NN ) | 
						
							| 345 |  | 2fveq3 |  |-  ( n = ( k + 1 ) -> ( S.2 ` ( F ` n ) ) = ( S.2 ` ( F ` ( k + 1 ) ) ) ) | 
						
							| 346 |  | fvex |  |-  ( S.2 ` ( F ` ( k + 1 ) ) ) e. _V | 
						
							| 347 | 345 319 346 | fvmpt |  |-  ( ( k + 1 ) e. NN -> ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` ( k + 1 ) ) = ( S.2 ` ( F ` ( k + 1 ) ) ) ) | 
						
							| 348 | 344 347 | syl |  |-  ( k e. NN -> ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` ( k + 1 ) ) = ( S.2 ` ( F ` ( k + 1 ) ) ) ) | 
						
							| 349 | 343 348 | breq12d |  |-  ( k e. NN -> ( ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` k ) <_ ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` ( k + 1 ) ) <-> ( S.2 ` ( F ` k ) ) <_ ( S.2 ` ( F ` ( k + 1 ) ) ) ) ) | 
						
							| 350 | 349 | ralbiia |  |-  ( A. k e. NN ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` k ) <_ ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` ( k + 1 ) ) <-> A. k e. NN ( S.2 ` ( F ` k ) ) <_ ( S.2 ` ( F ` ( k + 1 ) ) ) ) | 
						
							| 351 |  | fvoveq1 |  |-  ( n = k -> ( F ` ( n + 1 ) ) = ( F ` ( k + 1 ) ) ) | 
						
							| 352 | 351 | fveq2d |  |-  ( n = k -> ( S.2 ` ( F ` ( n + 1 ) ) ) = ( S.2 ` ( F ` ( k + 1 ) ) ) ) | 
						
							| 353 | 341 352 | breq12d |  |-  ( n = k -> ( ( S.2 ` ( F ` n ) ) <_ ( S.2 ` ( F ` ( n + 1 ) ) ) <-> ( S.2 ` ( F ` k ) ) <_ ( S.2 ` ( F ` ( k + 1 ) ) ) ) ) | 
						
							| 354 | 353 | cbvralvw |  |-  ( A. n e. NN ( S.2 ` ( F ` n ) ) <_ ( S.2 ` ( F ` ( n + 1 ) ) ) <-> A. k e. NN ( S.2 ` ( F ` k ) ) <_ ( S.2 ` ( F ` ( k + 1 ) ) ) ) | 
						
							| 355 | 350 354 | bitr4i |  |-  ( A. k e. NN ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` k ) <_ ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` ( k + 1 ) ) <-> A. n e. NN ( S.2 ` ( F ` n ) ) <_ ( S.2 ` ( F ` ( n + 1 ) ) ) ) | 
						
							| 356 | 340 355 | sylibr |  |-  ( ph -> A. k e. NN ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` k ) <_ ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` ( k + 1 ) ) ) | 
						
							| 357 | 356 | r19.21bi |  |-  ( ( ph /\ k e. NN ) -> ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` k ) <_ ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` ( k + 1 ) ) ) | 
						
							| 358 | 324 | ralrimiva |  |-  ( ph -> A. n e. NN ( S.2 ` ( F ` n ) ) <_ S ) | 
						
							| 359 | 343 | breq1d |  |-  ( k e. NN -> ( ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` k ) <_ x <-> ( S.2 ` ( F ` k ) ) <_ x ) ) | 
						
							| 360 | 359 | ralbiia |  |-  ( A. k e. NN ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` k ) <_ x <-> A. k e. NN ( S.2 ` ( F ` k ) ) <_ x ) | 
						
							| 361 | 341 | breq1d |  |-  ( n = k -> ( ( S.2 ` ( F ` n ) ) <_ x <-> ( S.2 ` ( F ` k ) ) <_ x ) ) | 
						
							| 362 | 361 | cbvralvw |  |-  ( A. n e. NN ( S.2 ` ( F ` n ) ) <_ x <-> A. k e. NN ( S.2 ` ( F ` k ) ) <_ x ) | 
						
							| 363 | 360 362 | bitr4i |  |-  ( A. k e. NN ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` k ) <_ x <-> A. n e. NN ( S.2 ` ( F ` n ) ) <_ x ) | 
						
							| 364 |  | breq2 |  |-  ( x = S -> ( ( S.2 ` ( F ` n ) ) <_ x <-> ( S.2 ` ( F ` n ) ) <_ S ) ) | 
						
							| 365 | 364 | ralbidv |  |-  ( x = S -> ( A. n e. NN ( S.2 ` ( F ` n ) ) <_ x <-> A. n e. NN ( S.2 ` ( F ` n ) ) <_ S ) ) | 
						
							| 366 | 363 365 | bitrid |  |-  ( x = S -> ( A. k e. NN ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` k ) <_ x <-> A. n e. NN ( S.2 ` ( F ` n ) ) <_ S ) ) | 
						
							| 367 | 366 | rspcev |  |-  ( ( S e. RR /\ A. n e. NN ( S.2 ` ( F ` n ) ) <_ S ) -> E. x e. RR A. k e. NN ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` k ) <_ x ) | 
						
							| 368 | 10 358 367 | syl2anc |  |-  ( ph -> E. x e. RR A. k e. NN ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` k ) <_ x ) | 
						
							| 369 | 12 13 327 357 368 | climsup |  |-  ( ph -> ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ~~> sup ( ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) , RR , < ) ) | 
						
							| 370 | 327 | frnd |  |-  ( ph -> ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) C_ RR ) | 
						
							| 371 | 319 313 | dmmptd |  |-  ( ph -> dom ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) = NN ) | 
						
							| 372 | 242 | a1i |  |-  ( ph -> NN =/= (/) ) | 
						
							| 373 | 371 372 | eqnetrd |  |-  ( ph -> dom ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) =/= (/) ) | 
						
							| 374 |  | dm0rn0 |  |-  ( dom ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) = (/) <-> ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) = (/) ) | 
						
							| 375 | 374 | necon3bii |  |-  ( dom ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) =/= (/) <-> ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) =/= (/) ) | 
						
							| 376 | 373 375 | sylib |  |-  ( ph -> ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) =/= (/) ) | 
						
							| 377 | 316 319 | fnmpti |  |-  ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) Fn NN | 
						
							| 378 |  | breq1 |  |-  ( z = ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` k ) -> ( z <_ x <-> ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` k ) <_ x ) ) | 
						
							| 379 | 378 | ralrn |  |-  ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) Fn NN -> ( A. z e. ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) z <_ x <-> A. k e. NN ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` k ) <_ x ) ) | 
						
							| 380 | 377 379 | mp1i |  |-  ( ph -> ( A. z e. ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) z <_ x <-> A. k e. NN ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` k ) <_ x ) ) | 
						
							| 381 | 380 | rexbidv |  |-  ( ph -> ( E. x e. RR A. z e. ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) z <_ x <-> E. x e. RR A. k e. NN ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` k ) <_ x ) ) | 
						
							| 382 | 368 381 | mpbird |  |-  ( ph -> E. x e. RR A. z e. ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) z <_ x ) | 
						
							| 383 |  | supxrre |  |-  ( ( ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) C_ RR /\ ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) =/= (/) /\ E. x e. RR A. z e. ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) z <_ x ) -> sup ( ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) , RR* , < ) = sup ( ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) , RR , < ) ) | 
						
							| 384 | 370 376 382 383 | syl3anc |  |-  ( ph -> sup ( ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) , RR* , < ) = sup ( ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) , RR , < ) ) | 
						
							| 385 | 6 384 | eqtr2id |  |-  ( ph -> sup ( ran ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) , RR , < ) = S ) | 
						
							| 386 | 369 385 | breqtrd |  |-  ( ph -> ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ~~> S ) | 
						
							| 387 | 25 | adantr |  |-  ( ( ph /\ j e. NN ) -> T e. RR ) | 
						
							| 388 | 96 | ffvelcdmda |  |-  ( ( ph /\ j e. NN ) -> ( A ` j ) e. dom vol ) | 
						
							| 389 | 278 | i1fres |  |-  ( ( H e. dom S.1 /\ ( A ` j ) e. dom vol ) -> ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) e. dom S.1 ) | 
						
							| 390 | 8 388 389 | syl2an2r |  |-  ( ( ph /\ j e. NN ) -> ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) e. dom S.1 ) | 
						
							| 391 |  | itg1cl |  |-  ( ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) e. dom S.1 -> ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) e. RR ) | 
						
							| 392 | 390 391 | syl |  |-  ( ( ph /\ j e. NN ) -> ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) e. RR ) | 
						
							| 393 | 387 392 | remulcld |  |-  ( ( ph /\ j e. NN ) -> ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) e. RR ) | 
						
							| 394 | 393 | fmpttd |  |-  ( ph -> ( j e. NN |-> ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ) : NN --> RR ) | 
						
							| 395 | 394 | ffvelcdmda |  |-  ( ( ph /\ k e. NN ) -> ( ( j e. NN |-> ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ) ` k ) e. RR ) | 
						
							| 396 | 327 | ffvelcdmda |  |-  ( ( ph /\ k e. NN ) -> ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` k ) e. RR ) | 
						
							| 397 | 329 | feq1d |  |-  ( n = k -> ( ( F ` n ) : RR --> ( 0 [,) +oo ) <-> ( F ` k ) : RR --> ( 0 [,) +oo ) ) ) | 
						
							| 398 | 397 | cbvralvw |  |-  ( A. n e. NN ( F ` n ) : RR --> ( 0 [,) +oo ) <-> A. k e. NN ( F ` k ) : RR --> ( 0 [,) +oo ) ) | 
						
							| 399 | 104 398 | sylib |  |-  ( ph -> A. k e. NN ( F ` k ) : RR --> ( 0 [,) +oo ) ) | 
						
							| 400 | 399 | r19.21bi |  |-  ( ( ph /\ k e. NN ) -> ( F ` k ) : RR --> ( 0 [,) +oo ) ) | 
						
							| 401 |  | fss |  |-  ( ( ( F ` k ) : RR --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ ( 0 [,] +oo ) ) -> ( F ` k ) : RR --> ( 0 [,] +oo ) ) | 
						
							| 402 | 400 308 401 | sylancl |  |-  ( ( ph /\ k e. NN ) -> ( F ` k ) : RR --> ( 0 [,] +oo ) ) | 
						
							| 403 | 31 | a1i |  |-  ( ( ph /\ k e. NN ) -> RR e. _V ) | 
						
							| 404 | 25 | adantr |  |-  ( ( ph /\ k e. NN ) -> T e. RR ) | 
						
							| 405 | 404 | adantr |  |-  ( ( ( ph /\ k e. NN ) /\ x e. RR ) -> T e. RR ) | 
						
							| 406 |  | fvex |  |-  ( H ` x ) e. _V | 
						
							| 407 |  | c0ex |  |-  0 e. _V | 
						
							| 408 | 406 407 | ifex |  |-  if ( x e. ( A ` k ) , ( H ` x ) , 0 ) e. _V | 
						
							| 409 | 408 | a1i |  |-  ( ( ( ph /\ k e. NN ) /\ x e. RR ) -> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) e. _V ) | 
						
							| 410 |  | fconstmpt |  |-  ( RR X. { T } ) = ( x e. RR |-> T ) | 
						
							| 411 | 410 | a1i |  |-  ( ( ph /\ k e. NN ) -> ( RR X. { T } ) = ( x e. RR |-> T ) ) | 
						
							| 412 |  | eqidd |  |-  ( ( ph /\ k e. NN ) -> ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) = ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) | 
						
							| 413 | 403 405 409 411 412 | offval2 |  |-  ( ( ph /\ k e. NN ) -> ( ( RR X. { T } ) oF x. ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) = ( x e. RR |-> ( T x. if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) ) | 
						
							| 414 |  | ovif2 |  |-  ( T x. if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) = if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , ( T x. 0 ) ) | 
						
							| 415 | 55 | adantr |  |-  ( ( ph /\ k e. NN ) -> T e. CC ) | 
						
							| 416 | 415 | mul01d |  |-  ( ( ph /\ k e. NN ) -> ( T x. 0 ) = 0 ) | 
						
							| 417 | 416 | ifeq2d |  |-  ( ( ph /\ k e. NN ) -> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , ( T x. 0 ) ) = if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) ) | 
						
							| 418 | 414 417 | eqtrid |  |-  ( ( ph /\ k e. NN ) -> ( T x. if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) = if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) ) | 
						
							| 419 | 418 | mpteq2dv |  |-  ( ( ph /\ k e. NN ) -> ( x e. RR |-> ( T x. if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) = ( x e. RR |-> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) ) ) | 
						
							| 420 | 413 419 | eqtrd |  |-  ( ( ph /\ k e. NN ) -> ( ( RR X. { T } ) oF x. ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) = ( x e. RR |-> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) ) ) | 
						
							| 421 | 295 404 | i1fmulc |  |-  ( ( ph /\ k e. NN ) -> ( ( RR X. { T } ) oF x. ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) e. dom S.1 ) | 
						
							| 422 | 420 421 | eqeltrrd |  |-  ( ( ph /\ k e. NN ) -> ( x e. RR |-> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) ) e. dom S.1 ) | 
						
							| 423 |  | iftrue |  |-  ( x e. ( A ` k ) -> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) = ( T x. ( H ` x ) ) ) | 
						
							| 424 | 423 | adantl |  |-  ( ( ( ( ph /\ k e. NN ) /\ x e. RR ) /\ x e. ( A ` k ) ) -> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) = ( T x. ( H ` x ) ) ) | 
						
							| 425 | 329 | fveq1d |  |-  ( n = k -> ( ( F ` n ) ` x ) = ( ( F ` k ) ` x ) ) | 
						
							| 426 | 425 | breq2d |  |-  ( n = k -> ( ( T x. ( H ` x ) ) <_ ( ( F ` n ) ` x ) <-> ( T x. ( H ` x ) ) <_ ( ( F ` k ) ` x ) ) ) | 
						
							| 427 | 426 | rabbidv |  |-  ( n = k -> { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` n ) ` x ) } = { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` k ) ` x ) } ) | 
						
							| 428 | 31 | rabex |  |-  { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` k ) ` x ) } e. _V | 
						
							| 429 | 427 11 428 | fvmpt |  |-  ( k e. NN -> ( A ` k ) = { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` k ) ` x ) } ) | 
						
							| 430 | 429 | ad2antlr |  |-  ( ( ( ph /\ k e. NN ) /\ x e. RR ) -> ( A ` k ) = { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` k ) ` x ) } ) | 
						
							| 431 | 430 | eleq2d |  |-  ( ( ( ph /\ k e. NN ) /\ x e. RR ) -> ( x e. ( A ` k ) <-> x e. { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` k ) ` x ) } ) ) | 
						
							| 432 | 431 | biimpa |  |-  ( ( ( ( ph /\ k e. NN ) /\ x e. RR ) /\ x e. ( A ` k ) ) -> x e. { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` k ) ` x ) } ) | 
						
							| 433 |  | rabid |  |-  ( x e. { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` k ) ` x ) } <-> ( x e. RR /\ ( T x. ( H ` x ) ) <_ ( ( F ` k ) ` x ) ) ) | 
						
							| 434 | 433 | simprbi |  |-  ( x e. { x e. RR | ( T x. ( H ` x ) ) <_ ( ( F ` k ) ` x ) } -> ( T x. ( H ` x ) ) <_ ( ( F ` k ) ` x ) ) | 
						
							| 435 | 432 434 | syl |  |-  ( ( ( ( ph /\ k e. NN ) /\ x e. RR ) /\ x e. ( A ` k ) ) -> ( T x. ( H ` x ) ) <_ ( ( F ` k ) ` x ) ) | 
						
							| 436 | 424 435 | eqbrtrd |  |-  ( ( ( ( ph /\ k e. NN ) /\ x e. RR ) /\ x e. ( A ` k ) ) -> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) <_ ( ( F ` k ) ` x ) ) | 
						
							| 437 |  | iffalse |  |-  ( -. x e. ( A ` k ) -> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) = 0 ) | 
						
							| 438 | 437 | adantl |  |-  ( ( ( ( ph /\ k e. NN ) /\ x e. RR ) /\ -. x e. ( A ` k ) ) -> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) = 0 ) | 
						
							| 439 | 400 | ffvelcdmda |  |-  ( ( ( ph /\ k e. NN ) /\ x e. RR ) -> ( ( F ` k ) ` x ) e. ( 0 [,) +oo ) ) | 
						
							| 440 |  | elrege0 |  |-  ( ( ( F ` k ) ` x ) e. ( 0 [,) +oo ) <-> ( ( ( F ` k ) ` x ) e. RR /\ 0 <_ ( ( F ` k ) ` x ) ) ) | 
						
							| 441 | 440 | simprbi |  |-  ( ( ( F ` k ) ` x ) e. ( 0 [,) +oo ) -> 0 <_ ( ( F ` k ) ` x ) ) | 
						
							| 442 | 439 441 | syl |  |-  ( ( ( ph /\ k e. NN ) /\ x e. RR ) -> 0 <_ ( ( F ` k ) ` x ) ) | 
						
							| 443 | 442 | adantr |  |-  ( ( ( ( ph /\ k e. NN ) /\ x e. RR ) /\ -. x e. ( A ` k ) ) -> 0 <_ ( ( F ` k ) ` x ) ) | 
						
							| 444 | 438 443 | eqbrtrd |  |-  ( ( ( ( ph /\ k e. NN ) /\ x e. RR ) /\ -. x e. ( A ` k ) ) -> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) <_ ( ( F ` k ) ` x ) ) | 
						
							| 445 | 436 444 | pm2.61dan |  |-  ( ( ( ph /\ k e. NN ) /\ x e. RR ) -> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) <_ ( ( F ` k ) ` x ) ) | 
						
							| 446 | 445 | ralrimiva |  |-  ( ( ph /\ k e. NN ) -> A. x e. RR if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) <_ ( ( F ` k ) ` x ) ) | 
						
							| 447 |  | ovex |  |-  ( T x. ( H ` x ) ) e. _V | 
						
							| 448 | 447 407 | ifex |  |-  if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) e. _V | 
						
							| 449 | 448 | a1i |  |-  ( ( ( ph /\ k e. NN ) /\ x e. RR ) -> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) e. _V ) | 
						
							| 450 |  | fvexd |  |-  ( ( ( ph /\ k e. NN ) /\ x e. RR ) -> ( ( F ` k ) ` x ) e. _V ) | 
						
							| 451 |  | eqidd |  |-  ( ( ph /\ k e. NN ) -> ( x e. RR |-> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) ) = ( x e. RR |-> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) ) ) | 
						
							| 452 | 400 | feqmptd |  |-  ( ( ph /\ k e. NN ) -> ( F ` k ) = ( x e. RR |-> ( ( F ` k ) ` x ) ) ) | 
						
							| 453 | 403 449 450 451 452 | ofrfval2 |  |-  ( ( ph /\ k e. NN ) -> ( ( x e. RR |-> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) ) oR <_ ( F ` k ) <-> A. x e. RR if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) <_ ( ( F ` k ) ` x ) ) ) | 
						
							| 454 | 446 453 | mpbird |  |-  ( ( ph /\ k e. NN ) -> ( x e. RR |-> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) ) oR <_ ( F ` k ) ) | 
						
							| 455 |  | itg2ub |  |-  ( ( ( F ` k ) : RR --> ( 0 [,] +oo ) /\ ( x e. RR |-> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) ) e. dom S.1 /\ ( x e. RR |-> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) ) oR <_ ( F ` k ) ) -> ( S.1 ` ( x e. RR |-> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) ) ) <_ ( S.2 ` ( F ` k ) ) ) | 
						
							| 456 | 402 422 454 455 | syl3anc |  |-  ( ( ph /\ k e. NN ) -> ( S.1 ` ( x e. RR |-> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) ) ) <_ ( S.2 ` ( F ` k ) ) ) | 
						
							| 457 | 303 | adantl |  |-  ( ( ph /\ k e. NN ) -> ( ( j e. NN |-> ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ) ` k ) = ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) ) ) | 
						
							| 458 | 295 404 | itg1mulc |  |-  ( ( ph /\ k e. NN ) -> ( S.1 ` ( ( RR X. { T } ) oF x. ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) ) = ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) ) ) | 
						
							| 459 | 420 | fveq2d |  |-  ( ( ph /\ k e. NN ) -> ( S.1 ` ( ( RR X. { T } ) oF x. ( x e. RR |-> if ( x e. ( A ` k ) , ( H ` x ) , 0 ) ) ) ) = ( S.1 ` ( x e. RR |-> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) ) ) ) | 
						
							| 460 | 457 458 459 | 3eqtr2d |  |-  ( ( ph /\ k e. NN ) -> ( ( j e. NN |-> ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ) ` k ) = ( S.1 ` ( x e. RR |-> if ( x e. ( A ` k ) , ( T x. ( H ` x ) ) , 0 ) ) ) ) | 
						
							| 461 | 343 | adantl |  |-  ( ( ph /\ k e. NN ) -> ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` k ) = ( S.2 ` ( F ` k ) ) ) | 
						
							| 462 | 456 460 461 | 3brtr4d |  |-  ( ( ph /\ k e. NN ) -> ( ( j e. NN |-> ( T x. ( S.1 ` ( x e. RR |-> if ( x e. ( A ` j ) , ( H ` x ) , 0 ) ) ) ) ) ` k ) <_ ( ( n e. NN |-> ( S.2 ` ( F ` n ) ) ) ` k ) ) | 
						
							| 463 | 12 13 307 386 395 396 462 | climle |  |-  ( ph -> ( T x. ( S.1 ` H ) ) <_ S ) |