| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itg2mulc.2 |  |-  ( ph -> F : RR --> ( 0 [,) +oo ) ) | 
						
							| 2 |  | itg2mulc.3 |  |-  ( ph -> ( S.2 ` F ) e. RR ) | 
						
							| 3 |  | itg2mulc.4 |  |-  ( ph -> A e. ( 0 [,) +oo ) ) | 
						
							| 4 | 1 | adantr |  |-  ( ( ph /\ 0 < A ) -> F : RR --> ( 0 [,) +oo ) ) | 
						
							| 5 | 2 | adantr |  |-  ( ( ph /\ 0 < A ) -> ( S.2 ` F ) e. RR ) | 
						
							| 6 |  | elrege0 |  |-  ( A e. ( 0 [,) +oo ) <-> ( A e. RR /\ 0 <_ A ) ) | 
						
							| 7 | 3 6 | sylib |  |-  ( ph -> ( A e. RR /\ 0 <_ A ) ) | 
						
							| 8 | 7 | simpld |  |-  ( ph -> A e. RR ) | 
						
							| 9 | 8 | anim1i |  |-  ( ( ph /\ 0 < A ) -> ( A e. RR /\ 0 < A ) ) | 
						
							| 10 |  | elrp |  |-  ( A e. RR+ <-> ( A e. RR /\ 0 < A ) ) | 
						
							| 11 | 9 10 | sylibr |  |-  ( ( ph /\ 0 < A ) -> A e. RR+ ) | 
						
							| 12 | 4 5 11 | itg2mulclem |  |-  ( ( ph /\ 0 < A ) -> ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) <_ ( A x. ( S.2 ` F ) ) ) | 
						
							| 13 |  | ge0mulcl |  |-  ( ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) -> ( x x. y ) e. ( 0 [,) +oo ) ) | 
						
							| 14 | 13 | adantl |  |-  ( ( ph /\ ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) ) -> ( x x. y ) e. ( 0 [,) +oo ) ) | 
						
							| 15 |  | fconst6g |  |-  ( A e. ( 0 [,) +oo ) -> ( RR X. { A } ) : RR --> ( 0 [,) +oo ) ) | 
						
							| 16 | 3 15 | syl |  |-  ( ph -> ( RR X. { A } ) : RR --> ( 0 [,) +oo ) ) | 
						
							| 17 |  | reex |  |-  RR e. _V | 
						
							| 18 | 17 | a1i |  |-  ( ph -> RR e. _V ) | 
						
							| 19 |  | inidm |  |-  ( RR i^i RR ) = RR | 
						
							| 20 | 14 16 1 18 18 19 | off |  |-  ( ph -> ( ( RR X. { A } ) oF x. F ) : RR --> ( 0 [,) +oo ) ) | 
						
							| 21 | 20 | adantr |  |-  ( ( ph /\ 0 < A ) -> ( ( RR X. { A } ) oF x. F ) : RR --> ( 0 [,) +oo ) ) | 
						
							| 22 |  | icossicc |  |-  ( 0 [,) +oo ) C_ ( 0 [,] +oo ) | 
						
							| 23 |  | fss |  |-  ( ( ( ( RR X. { A } ) oF x. F ) : RR --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ ( 0 [,] +oo ) ) -> ( ( RR X. { A } ) oF x. F ) : RR --> ( 0 [,] +oo ) ) | 
						
							| 24 | 20 22 23 | sylancl |  |-  ( ph -> ( ( RR X. { A } ) oF x. F ) : RR --> ( 0 [,] +oo ) ) | 
						
							| 25 | 24 | adantr |  |-  ( ( ph /\ 0 < A ) -> ( ( RR X. { A } ) oF x. F ) : RR --> ( 0 [,] +oo ) ) | 
						
							| 26 | 8 2 | remulcld |  |-  ( ph -> ( A x. ( S.2 ` F ) ) e. RR ) | 
						
							| 27 | 26 | adantr |  |-  ( ( ph /\ 0 < A ) -> ( A x. ( S.2 ` F ) ) e. RR ) | 
						
							| 28 |  | itg2lecl |  |-  ( ( ( ( RR X. { A } ) oF x. F ) : RR --> ( 0 [,] +oo ) /\ ( A x. ( S.2 ` F ) ) e. RR /\ ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) <_ ( A x. ( S.2 ` F ) ) ) -> ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) e. RR ) | 
						
							| 29 | 25 27 12 28 | syl3anc |  |-  ( ( ph /\ 0 < A ) -> ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) e. RR ) | 
						
							| 30 | 11 | rpreccld |  |-  ( ( ph /\ 0 < A ) -> ( 1 / A ) e. RR+ ) | 
						
							| 31 | 21 29 30 | itg2mulclem |  |-  ( ( ph /\ 0 < A ) -> ( S.2 ` ( ( RR X. { ( 1 / A ) } ) oF x. ( ( RR X. { A } ) oF x. F ) ) ) <_ ( ( 1 / A ) x. ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) ) ) | 
						
							| 32 | 4 | feqmptd |  |-  ( ( ph /\ 0 < A ) -> F = ( y e. RR |-> ( F ` y ) ) ) | 
						
							| 33 |  | rge0ssre |  |-  ( 0 [,) +oo ) C_ RR | 
						
							| 34 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 35 | 33 34 | sstri |  |-  ( 0 [,) +oo ) C_ CC | 
						
							| 36 |  | fss |  |-  ( ( F : RR --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ CC ) -> F : RR --> CC ) | 
						
							| 37 | 1 35 36 | sylancl |  |-  ( ph -> F : RR --> CC ) | 
						
							| 38 | 37 | adantr |  |-  ( ( ph /\ 0 < A ) -> F : RR --> CC ) | 
						
							| 39 | 38 | ffvelcdmda |  |-  ( ( ( ph /\ 0 < A ) /\ y e. RR ) -> ( F ` y ) e. CC ) | 
						
							| 40 | 39 | mullidd |  |-  ( ( ( ph /\ 0 < A ) /\ y e. RR ) -> ( 1 x. ( F ` y ) ) = ( F ` y ) ) | 
						
							| 41 | 40 | mpteq2dva |  |-  ( ( ph /\ 0 < A ) -> ( y e. RR |-> ( 1 x. ( F ` y ) ) ) = ( y e. RR |-> ( F ` y ) ) ) | 
						
							| 42 | 32 41 | eqtr4d |  |-  ( ( ph /\ 0 < A ) -> F = ( y e. RR |-> ( 1 x. ( F ` y ) ) ) ) | 
						
							| 43 | 17 | a1i |  |-  ( ( ph /\ 0 < A ) -> RR e. _V ) | 
						
							| 44 |  | 1red |  |-  ( ( ( ph /\ 0 < A ) /\ y e. RR ) -> 1 e. RR ) | 
						
							| 45 | 43 30 11 | ofc12 |  |-  ( ( ph /\ 0 < A ) -> ( ( RR X. { ( 1 / A ) } ) oF x. ( RR X. { A } ) ) = ( RR X. { ( ( 1 / A ) x. A ) } ) ) | 
						
							| 46 |  | fconstmpt |  |-  ( RR X. { ( ( 1 / A ) x. A ) } ) = ( y e. RR |-> ( ( 1 / A ) x. A ) ) | 
						
							| 47 | 45 46 | eqtrdi |  |-  ( ( ph /\ 0 < A ) -> ( ( RR X. { ( 1 / A ) } ) oF x. ( RR X. { A } ) ) = ( y e. RR |-> ( ( 1 / A ) x. A ) ) ) | 
						
							| 48 | 8 | recnd |  |-  ( ph -> A e. CC ) | 
						
							| 49 | 48 | adantr |  |-  ( ( ph /\ 0 < A ) -> A e. CC ) | 
						
							| 50 | 11 | rpne0d |  |-  ( ( ph /\ 0 < A ) -> A =/= 0 ) | 
						
							| 51 | 49 50 | recid2d |  |-  ( ( ph /\ 0 < A ) -> ( ( 1 / A ) x. A ) = 1 ) | 
						
							| 52 | 51 | mpteq2dv |  |-  ( ( ph /\ 0 < A ) -> ( y e. RR |-> ( ( 1 / A ) x. A ) ) = ( y e. RR |-> 1 ) ) | 
						
							| 53 | 47 52 | eqtrd |  |-  ( ( ph /\ 0 < A ) -> ( ( RR X. { ( 1 / A ) } ) oF x. ( RR X. { A } ) ) = ( y e. RR |-> 1 ) ) | 
						
							| 54 | 43 44 39 53 32 | offval2 |  |-  ( ( ph /\ 0 < A ) -> ( ( ( RR X. { ( 1 / A ) } ) oF x. ( RR X. { A } ) ) oF x. F ) = ( y e. RR |-> ( 1 x. ( F ` y ) ) ) ) | 
						
							| 55 | 30 | rpcnd |  |-  ( ( ph /\ 0 < A ) -> ( 1 / A ) e. CC ) | 
						
							| 56 |  | fconst6g |  |-  ( ( 1 / A ) e. CC -> ( RR X. { ( 1 / A ) } ) : RR --> CC ) | 
						
							| 57 | 55 56 | syl |  |-  ( ( ph /\ 0 < A ) -> ( RR X. { ( 1 / A ) } ) : RR --> CC ) | 
						
							| 58 |  | fconst6g |  |-  ( A e. CC -> ( RR X. { A } ) : RR --> CC ) | 
						
							| 59 | 49 58 | syl |  |-  ( ( ph /\ 0 < A ) -> ( RR X. { A } ) : RR --> CC ) | 
						
							| 60 |  | mulass |  |-  ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( ( x x. y ) x. z ) = ( x x. ( y x. z ) ) ) | 
						
							| 61 | 60 | adantl |  |-  ( ( ( ph /\ 0 < A ) /\ ( x e. CC /\ y e. CC /\ z e. CC ) ) -> ( ( x x. y ) x. z ) = ( x x. ( y x. z ) ) ) | 
						
							| 62 | 43 57 59 38 61 | caofass |  |-  ( ( ph /\ 0 < A ) -> ( ( ( RR X. { ( 1 / A ) } ) oF x. ( RR X. { A } ) ) oF x. F ) = ( ( RR X. { ( 1 / A ) } ) oF x. ( ( RR X. { A } ) oF x. F ) ) ) | 
						
							| 63 | 42 54 62 | 3eqtr2d |  |-  ( ( ph /\ 0 < A ) -> F = ( ( RR X. { ( 1 / A ) } ) oF x. ( ( RR X. { A } ) oF x. F ) ) ) | 
						
							| 64 | 63 | fveq2d |  |-  ( ( ph /\ 0 < A ) -> ( S.2 ` F ) = ( S.2 ` ( ( RR X. { ( 1 / A ) } ) oF x. ( ( RR X. { A } ) oF x. F ) ) ) ) | 
						
							| 65 | 29 | recnd |  |-  ( ( ph /\ 0 < A ) -> ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) e. CC ) | 
						
							| 66 | 65 49 50 | divrec2d |  |-  ( ( ph /\ 0 < A ) -> ( ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) / A ) = ( ( 1 / A ) x. ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) ) ) | 
						
							| 67 | 31 64 66 | 3brtr4d |  |-  ( ( ph /\ 0 < A ) -> ( S.2 ` F ) <_ ( ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) / A ) ) | 
						
							| 68 | 5 29 11 | lemuldiv2d |  |-  ( ( ph /\ 0 < A ) -> ( ( A x. ( S.2 ` F ) ) <_ ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) <-> ( S.2 ` F ) <_ ( ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) / A ) ) ) | 
						
							| 69 | 67 68 | mpbird |  |-  ( ( ph /\ 0 < A ) -> ( A x. ( S.2 ` F ) ) <_ ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) ) | 
						
							| 70 |  | itg2cl |  |-  ( ( ( RR X. { A } ) oF x. F ) : RR --> ( 0 [,] +oo ) -> ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) e. RR* ) | 
						
							| 71 | 24 70 | syl |  |-  ( ph -> ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) e. RR* ) | 
						
							| 72 | 26 | rexrd |  |-  ( ph -> ( A x. ( S.2 ` F ) ) e. RR* ) | 
						
							| 73 |  | xrletri3 |  |-  ( ( ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) e. RR* /\ ( A x. ( S.2 ` F ) ) e. RR* ) -> ( ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) = ( A x. ( S.2 ` F ) ) <-> ( ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) <_ ( A x. ( S.2 ` F ) ) /\ ( A x. ( S.2 ` F ) ) <_ ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) ) ) ) | 
						
							| 74 | 71 72 73 | syl2anc |  |-  ( ph -> ( ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) = ( A x. ( S.2 ` F ) ) <-> ( ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) <_ ( A x. ( S.2 ` F ) ) /\ ( A x. ( S.2 ` F ) ) <_ ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) ) ) ) | 
						
							| 75 | 74 | adantr |  |-  ( ( ph /\ 0 < A ) -> ( ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) = ( A x. ( S.2 ` F ) ) <-> ( ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) <_ ( A x. ( S.2 ` F ) ) /\ ( A x. ( S.2 ` F ) ) <_ ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) ) ) ) | 
						
							| 76 | 12 69 75 | mpbir2and |  |-  ( ( ph /\ 0 < A ) -> ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) = ( A x. ( S.2 ` F ) ) ) | 
						
							| 77 | 17 | a1i |  |-  ( ( ph /\ 0 = A ) -> RR e. _V ) | 
						
							| 78 | 37 | adantr |  |-  ( ( ph /\ 0 = A ) -> F : RR --> CC ) | 
						
							| 79 | 8 | adantr |  |-  ( ( ph /\ 0 = A ) -> A e. RR ) | 
						
							| 80 |  | 0re |  |-  0 e. RR | 
						
							| 81 | 80 | a1i |  |-  ( ( ph /\ 0 = A ) -> 0 e. RR ) | 
						
							| 82 |  | simplr |  |-  ( ( ( ph /\ 0 = A ) /\ x e. CC ) -> 0 = A ) | 
						
							| 83 | 82 | oveq1d |  |-  ( ( ( ph /\ 0 = A ) /\ x e. CC ) -> ( 0 x. x ) = ( A x. x ) ) | 
						
							| 84 |  | mul02 |  |-  ( x e. CC -> ( 0 x. x ) = 0 ) | 
						
							| 85 | 84 | adantl |  |-  ( ( ( ph /\ 0 = A ) /\ x e. CC ) -> ( 0 x. x ) = 0 ) | 
						
							| 86 | 83 85 | eqtr3d |  |-  ( ( ( ph /\ 0 = A ) /\ x e. CC ) -> ( A x. x ) = 0 ) | 
						
							| 87 | 77 78 79 81 86 | caofid2 |  |-  ( ( ph /\ 0 = A ) -> ( ( RR X. { A } ) oF x. F ) = ( RR X. { 0 } ) ) | 
						
							| 88 | 87 | fveq2d |  |-  ( ( ph /\ 0 = A ) -> ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) = ( S.2 ` ( RR X. { 0 } ) ) ) | 
						
							| 89 |  | itg20 |  |-  ( S.2 ` ( RR X. { 0 } ) ) = 0 | 
						
							| 90 | 88 89 | eqtrdi |  |-  ( ( ph /\ 0 = A ) -> ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) = 0 ) | 
						
							| 91 | 2 | adantr |  |-  ( ( ph /\ 0 = A ) -> ( S.2 ` F ) e. RR ) | 
						
							| 92 | 91 | recnd |  |-  ( ( ph /\ 0 = A ) -> ( S.2 ` F ) e. CC ) | 
						
							| 93 | 92 | mul02d |  |-  ( ( ph /\ 0 = A ) -> ( 0 x. ( S.2 ` F ) ) = 0 ) | 
						
							| 94 |  | simpr |  |-  ( ( ph /\ 0 = A ) -> 0 = A ) | 
						
							| 95 | 94 | oveq1d |  |-  ( ( ph /\ 0 = A ) -> ( 0 x. ( S.2 ` F ) ) = ( A x. ( S.2 ` F ) ) ) | 
						
							| 96 | 90 93 95 | 3eqtr2d |  |-  ( ( ph /\ 0 = A ) -> ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) = ( A x. ( S.2 ` F ) ) ) | 
						
							| 97 | 7 | simprd |  |-  ( ph -> 0 <_ A ) | 
						
							| 98 |  | leloe |  |-  ( ( 0 e. RR /\ A e. RR ) -> ( 0 <_ A <-> ( 0 < A \/ 0 = A ) ) ) | 
						
							| 99 | 80 8 98 | sylancr |  |-  ( ph -> ( 0 <_ A <-> ( 0 < A \/ 0 = A ) ) ) | 
						
							| 100 | 97 99 | mpbid |  |-  ( ph -> ( 0 < A \/ 0 = A ) ) | 
						
							| 101 | 76 96 100 | mpjaodan |  |-  ( ph -> ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) = ( A x. ( S.2 ` F ) ) ) |