Step |
Hyp |
Ref |
Expression |
1 |
|
itg2mulc.2 |
|- ( ph -> F : RR --> ( 0 [,) +oo ) ) |
2 |
|
itg2mulc.3 |
|- ( ph -> ( S.2 ` F ) e. RR ) |
3 |
|
itg2mulc.4 |
|- ( ph -> A e. ( 0 [,) +oo ) ) |
4 |
1
|
adantr |
|- ( ( ph /\ 0 < A ) -> F : RR --> ( 0 [,) +oo ) ) |
5 |
2
|
adantr |
|- ( ( ph /\ 0 < A ) -> ( S.2 ` F ) e. RR ) |
6 |
|
elrege0 |
|- ( A e. ( 0 [,) +oo ) <-> ( A e. RR /\ 0 <_ A ) ) |
7 |
3 6
|
sylib |
|- ( ph -> ( A e. RR /\ 0 <_ A ) ) |
8 |
7
|
simpld |
|- ( ph -> A e. RR ) |
9 |
8
|
anim1i |
|- ( ( ph /\ 0 < A ) -> ( A e. RR /\ 0 < A ) ) |
10 |
|
elrp |
|- ( A e. RR+ <-> ( A e. RR /\ 0 < A ) ) |
11 |
9 10
|
sylibr |
|- ( ( ph /\ 0 < A ) -> A e. RR+ ) |
12 |
4 5 11
|
itg2mulclem |
|- ( ( ph /\ 0 < A ) -> ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) <_ ( A x. ( S.2 ` F ) ) ) |
13 |
|
ge0mulcl |
|- ( ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) -> ( x x. y ) e. ( 0 [,) +oo ) ) |
14 |
13
|
adantl |
|- ( ( ph /\ ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) ) -> ( x x. y ) e. ( 0 [,) +oo ) ) |
15 |
|
fconst6g |
|- ( A e. ( 0 [,) +oo ) -> ( RR X. { A } ) : RR --> ( 0 [,) +oo ) ) |
16 |
3 15
|
syl |
|- ( ph -> ( RR X. { A } ) : RR --> ( 0 [,) +oo ) ) |
17 |
|
reex |
|- RR e. _V |
18 |
17
|
a1i |
|- ( ph -> RR e. _V ) |
19 |
|
inidm |
|- ( RR i^i RR ) = RR |
20 |
14 16 1 18 18 19
|
off |
|- ( ph -> ( ( RR X. { A } ) oF x. F ) : RR --> ( 0 [,) +oo ) ) |
21 |
20
|
adantr |
|- ( ( ph /\ 0 < A ) -> ( ( RR X. { A } ) oF x. F ) : RR --> ( 0 [,) +oo ) ) |
22 |
|
icossicc |
|- ( 0 [,) +oo ) C_ ( 0 [,] +oo ) |
23 |
|
fss |
|- ( ( ( ( RR X. { A } ) oF x. F ) : RR --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ ( 0 [,] +oo ) ) -> ( ( RR X. { A } ) oF x. F ) : RR --> ( 0 [,] +oo ) ) |
24 |
20 22 23
|
sylancl |
|- ( ph -> ( ( RR X. { A } ) oF x. F ) : RR --> ( 0 [,] +oo ) ) |
25 |
24
|
adantr |
|- ( ( ph /\ 0 < A ) -> ( ( RR X. { A } ) oF x. F ) : RR --> ( 0 [,] +oo ) ) |
26 |
8 2
|
remulcld |
|- ( ph -> ( A x. ( S.2 ` F ) ) e. RR ) |
27 |
26
|
adantr |
|- ( ( ph /\ 0 < A ) -> ( A x. ( S.2 ` F ) ) e. RR ) |
28 |
|
itg2lecl |
|- ( ( ( ( RR X. { A } ) oF x. F ) : RR --> ( 0 [,] +oo ) /\ ( A x. ( S.2 ` F ) ) e. RR /\ ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) <_ ( A x. ( S.2 ` F ) ) ) -> ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) e. RR ) |
29 |
25 27 12 28
|
syl3anc |
|- ( ( ph /\ 0 < A ) -> ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) e. RR ) |
30 |
11
|
rpreccld |
|- ( ( ph /\ 0 < A ) -> ( 1 / A ) e. RR+ ) |
31 |
21 29 30
|
itg2mulclem |
|- ( ( ph /\ 0 < A ) -> ( S.2 ` ( ( RR X. { ( 1 / A ) } ) oF x. ( ( RR X. { A } ) oF x. F ) ) ) <_ ( ( 1 / A ) x. ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) ) ) |
32 |
4
|
feqmptd |
|- ( ( ph /\ 0 < A ) -> F = ( y e. RR |-> ( F ` y ) ) ) |
33 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
34 |
|
ax-resscn |
|- RR C_ CC |
35 |
33 34
|
sstri |
|- ( 0 [,) +oo ) C_ CC |
36 |
|
fss |
|- ( ( F : RR --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ CC ) -> F : RR --> CC ) |
37 |
1 35 36
|
sylancl |
|- ( ph -> F : RR --> CC ) |
38 |
37
|
adantr |
|- ( ( ph /\ 0 < A ) -> F : RR --> CC ) |
39 |
38
|
ffvelrnda |
|- ( ( ( ph /\ 0 < A ) /\ y e. RR ) -> ( F ` y ) e. CC ) |
40 |
39
|
mulid2d |
|- ( ( ( ph /\ 0 < A ) /\ y e. RR ) -> ( 1 x. ( F ` y ) ) = ( F ` y ) ) |
41 |
40
|
mpteq2dva |
|- ( ( ph /\ 0 < A ) -> ( y e. RR |-> ( 1 x. ( F ` y ) ) ) = ( y e. RR |-> ( F ` y ) ) ) |
42 |
32 41
|
eqtr4d |
|- ( ( ph /\ 0 < A ) -> F = ( y e. RR |-> ( 1 x. ( F ` y ) ) ) ) |
43 |
17
|
a1i |
|- ( ( ph /\ 0 < A ) -> RR e. _V ) |
44 |
|
1red |
|- ( ( ( ph /\ 0 < A ) /\ y e. RR ) -> 1 e. RR ) |
45 |
43 30 11
|
ofc12 |
|- ( ( ph /\ 0 < A ) -> ( ( RR X. { ( 1 / A ) } ) oF x. ( RR X. { A } ) ) = ( RR X. { ( ( 1 / A ) x. A ) } ) ) |
46 |
|
fconstmpt |
|- ( RR X. { ( ( 1 / A ) x. A ) } ) = ( y e. RR |-> ( ( 1 / A ) x. A ) ) |
47 |
45 46
|
eqtrdi |
|- ( ( ph /\ 0 < A ) -> ( ( RR X. { ( 1 / A ) } ) oF x. ( RR X. { A } ) ) = ( y e. RR |-> ( ( 1 / A ) x. A ) ) ) |
48 |
8
|
recnd |
|- ( ph -> A e. CC ) |
49 |
48
|
adantr |
|- ( ( ph /\ 0 < A ) -> A e. CC ) |
50 |
11
|
rpne0d |
|- ( ( ph /\ 0 < A ) -> A =/= 0 ) |
51 |
49 50
|
recid2d |
|- ( ( ph /\ 0 < A ) -> ( ( 1 / A ) x. A ) = 1 ) |
52 |
51
|
mpteq2dv |
|- ( ( ph /\ 0 < A ) -> ( y e. RR |-> ( ( 1 / A ) x. A ) ) = ( y e. RR |-> 1 ) ) |
53 |
47 52
|
eqtrd |
|- ( ( ph /\ 0 < A ) -> ( ( RR X. { ( 1 / A ) } ) oF x. ( RR X. { A } ) ) = ( y e. RR |-> 1 ) ) |
54 |
43 44 39 53 32
|
offval2 |
|- ( ( ph /\ 0 < A ) -> ( ( ( RR X. { ( 1 / A ) } ) oF x. ( RR X. { A } ) ) oF x. F ) = ( y e. RR |-> ( 1 x. ( F ` y ) ) ) ) |
55 |
30
|
rpcnd |
|- ( ( ph /\ 0 < A ) -> ( 1 / A ) e. CC ) |
56 |
|
fconst6g |
|- ( ( 1 / A ) e. CC -> ( RR X. { ( 1 / A ) } ) : RR --> CC ) |
57 |
55 56
|
syl |
|- ( ( ph /\ 0 < A ) -> ( RR X. { ( 1 / A ) } ) : RR --> CC ) |
58 |
|
fconst6g |
|- ( A e. CC -> ( RR X. { A } ) : RR --> CC ) |
59 |
49 58
|
syl |
|- ( ( ph /\ 0 < A ) -> ( RR X. { A } ) : RR --> CC ) |
60 |
|
mulass |
|- ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( ( x x. y ) x. z ) = ( x x. ( y x. z ) ) ) |
61 |
60
|
adantl |
|- ( ( ( ph /\ 0 < A ) /\ ( x e. CC /\ y e. CC /\ z e. CC ) ) -> ( ( x x. y ) x. z ) = ( x x. ( y x. z ) ) ) |
62 |
43 57 59 38 61
|
caofass |
|- ( ( ph /\ 0 < A ) -> ( ( ( RR X. { ( 1 / A ) } ) oF x. ( RR X. { A } ) ) oF x. F ) = ( ( RR X. { ( 1 / A ) } ) oF x. ( ( RR X. { A } ) oF x. F ) ) ) |
63 |
42 54 62
|
3eqtr2d |
|- ( ( ph /\ 0 < A ) -> F = ( ( RR X. { ( 1 / A ) } ) oF x. ( ( RR X. { A } ) oF x. F ) ) ) |
64 |
63
|
fveq2d |
|- ( ( ph /\ 0 < A ) -> ( S.2 ` F ) = ( S.2 ` ( ( RR X. { ( 1 / A ) } ) oF x. ( ( RR X. { A } ) oF x. F ) ) ) ) |
65 |
29
|
recnd |
|- ( ( ph /\ 0 < A ) -> ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) e. CC ) |
66 |
65 49 50
|
divrec2d |
|- ( ( ph /\ 0 < A ) -> ( ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) / A ) = ( ( 1 / A ) x. ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) ) ) |
67 |
31 64 66
|
3brtr4d |
|- ( ( ph /\ 0 < A ) -> ( S.2 ` F ) <_ ( ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) / A ) ) |
68 |
5 29 11
|
lemuldiv2d |
|- ( ( ph /\ 0 < A ) -> ( ( A x. ( S.2 ` F ) ) <_ ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) <-> ( S.2 ` F ) <_ ( ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) / A ) ) ) |
69 |
67 68
|
mpbird |
|- ( ( ph /\ 0 < A ) -> ( A x. ( S.2 ` F ) ) <_ ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) ) |
70 |
|
itg2cl |
|- ( ( ( RR X. { A } ) oF x. F ) : RR --> ( 0 [,] +oo ) -> ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) e. RR* ) |
71 |
24 70
|
syl |
|- ( ph -> ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) e. RR* ) |
72 |
26
|
rexrd |
|- ( ph -> ( A x. ( S.2 ` F ) ) e. RR* ) |
73 |
|
xrletri3 |
|- ( ( ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) e. RR* /\ ( A x. ( S.2 ` F ) ) e. RR* ) -> ( ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) = ( A x. ( S.2 ` F ) ) <-> ( ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) <_ ( A x. ( S.2 ` F ) ) /\ ( A x. ( S.2 ` F ) ) <_ ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) ) ) ) |
74 |
71 72 73
|
syl2anc |
|- ( ph -> ( ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) = ( A x. ( S.2 ` F ) ) <-> ( ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) <_ ( A x. ( S.2 ` F ) ) /\ ( A x. ( S.2 ` F ) ) <_ ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) ) ) ) |
75 |
74
|
adantr |
|- ( ( ph /\ 0 < A ) -> ( ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) = ( A x. ( S.2 ` F ) ) <-> ( ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) <_ ( A x. ( S.2 ` F ) ) /\ ( A x. ( S.2 ` F ) ) <_ ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) ) ) ) |
76 |
12 69 75
|
mpbir2and |
|- ( ( ph /\ 0 < A ) -> ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) = ( A x. ( S.2 ` F ) ) ) |
77 |
17
|
a1i |
|- ( ( ph /\ 0 = A ) -> RR e. _V ) |
78 |
37
|
adantr |
|- ( ( ph /\ 0 = A ) -> F : RR --> CC ) |
79 |
8
|
adantr |
|- ( ( ph /\ 0 = A ) -> A e. RR ) |
80 |
|
0re |
|- 0 e. RR |
81 |
80
|
a1i |
|- ( ( ph /\ 0 = A ) -> 0 e. RR ) |
82 |
|
simplr |
|- ( ( ( ph /\ 0 = A ) /\ x e. CC ) -> 0 = A ) |
83 |
82
|
oveq1d |
|- ( ( ( ph /\ 0 = A ) /\ x e. CC ) -> ( 0 x. x ) = ( A x. x ) ) |
84 |
|
mul02 |
|- ( x e. CC -> ( 0 x. x ) = 0 ) |
85 |
84
|
adantl |
|- ( ( ( ph /\ 0 = A ) /\ x e. CC ) -> ( 0 x. x ) = 0 ) |
86 |
83 85
|
eqtr3d |
|- ( ( ( ph /\ 0 = A ) /\ x e. CC ) -> ( A x. x ) = 0 ) |
87 |
77 78 79 81 86
|
caofid2 |
|- ( ( ph /\ 0 = A ) -> ( ( RR X. { A } ) oF x. F ) = ( RR X. { 0 } ) ) |
88 |
87
|
fveq2d |
|- ( ( ph /\ 0 = A ) -> ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) = ( S.2 ` ( RR X. { 0 } ) ) ) |
89 |
|
itg20 |
|- ( S.2 ` ( RR X. { 0 } ) ) = 0 |
90 |
88 89
|
eqtrdi |
|- ( ( ph /\ 0 = A ) -> ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) = 0 ) |
91 |
2
|
adantr |
|- ( ( ph /\ 0 = A ) -> ( S.2 ` F ) e. RR ) |
92 |
91
|
recnd |
|- ( ( ph /\ 0 = A ) -> ( S.2 ` F ) e. CC ) |
93 |
92
|
mul02d |
|- ( ( ph /\ 0 = A ) -> ( 0 x. ( S.2 ` F ) ) = 0 ) |
94 |
|
simpr |
|- ( ( ph /\ 0 = A ) -> 0 = A ) |
95 |
94
|
oveq1d |
|- ( ( ph /\ 0 = A ) -> ( 0 x. ( S.2 ` F ) ) = ( A x. ( S.2 ` F ) ) ) |
96 |
90 93 95
|
3eqtr2d |
|- ( ( ph /\ 0 = A ) -> ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) = ( A x. ( S.2 ` F ) ) ) |
97 |
7
|
simprd |
|- ( ph -> 0 <_ A ) |
98 |
|
leloe |
|- ( ( 0 e. RR /\ A e. RR ) -> ( 0 <_ A <-> ( 0 < A \/ 0 = A ) ) ) |
99 |
80 8 98
|
sylancr |
|- ( ph -> ( 0 <_ A <-> ( 0 < A \/ 0 = A ) ) ) |
100 |
97 99
|
mpbid |
|- ( ph -> ( 0 < A \/ 0 = A ) ) |
101 |
76 96 100
|
mpjaodan |
|- ( ph -> ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) = ( A x. ( S.2 ` F ) ) ) |