| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itg2mulc.2 |  |-  ( ph -> F : RR --> ( 0 [,) +oo ) ) | 
						
							| 2 |  | itg2mulc.3 |  |-  ( ph -> ( S.2 ` F ) e. RR ) | 
						
							| 3 |  | itg2mulclem.4 |  |-  ( ph -> A e. RR+ ) | 
						
							| 4 |  | icossicc |  |-  ( 0 [,) +oo ) C_ ( 0 [,] +oo ) | 
						
							| 5 |  | fss |  |-  ( ( F : RR --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ ( 0 [,] +oo ) ) -> F : RR --> ( 0 [,] +oo ) ) | 
						
							| 6 | 1 4 5 | sylancl |  |-  ( ph -> F : RR --> ( 0 [,] +oo ) ) | 
						
							| 7 | 6 | adantr |  |-  ( ( ph /\ f e. dom S.1 ) -> F : RR --> ( 0 [,] +oo ) ) | 
						
							| 8 |  | simpr |  |-  ( ( ph /\ f e. dom S.1 ) -> f e. dom S.1 ) | 
						
							| 9 | 3 | rpreccld |  |-  ( ph -> ( 1 / A ) e. RR+ ) | 
						
							| 10 | 9 | adantr |  |-  ( ( ph /\ f e. dom S.1 ) -> ( 1 / A ) e. RR+ ) | 
						
							| 11 | 10 | rpred |  |-  ( ( ph /\ f e. dom S.1 ) -> ( 1 / A ) e. RR ) | 
						
							| 12 | 8 11 | i1fmulc |  |-  ( ( ph /\ f e. dom S.1 ) -> ( ( RR X. { ( 1 / A ) } ) oF x. f ) e. dom S.1 ) | 
						
							| 13 |  | itg2ub |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ ( ( RR X. { ( 1 / A ) } ) oF x. f ) e. dom S.1 /\ ( ( RR X. { ( 1 / A ) } ) oF x. f ) oR <_ F ) -> ( S.1 ` ( ( RR X. { ( 1 / A ) } ) oF x. f ) ) <_ ( S.2 ` F ) ) | 
						
							| 14 | 13 | 3expia |  |-  ( ( F : RR --> ( 0 [,] +oo ) /\ ( ( RR X. { ( 1 / A ) } ) oF x. f ) e. dom S.1 ) -> ( ( ( RR X. { ( 1 / A ) } ) oF x. f ) oR <_ F -> ( S.1 ` ( ( RR X. { ( 1 / A ) } ) oF x. f ) ) <_ ( S.2 ` F ) ) ) | 
						
							| 15 | 7 12 14 | syl2anc |  |-  ( ( ph /\ f e. dom S.1 ) -> ( ( ( RR X. { ( 1 / A ) } ) oF x. f ) oR <_ F -> ( S.1 ` ( ( RR X. { ( 1 / A ) } ) oF x. f ) ) <_ ( S.2 ` F ) ) ) | 
						
							| 16 |  | i1ff |  |-  ( f e. dom S.1 -> f : RR --> RR ) | 
						
							| 17 | 16 | adantl |  |-  ( ( ph /\ f e. dom S.1 ) -> f : RR --> RR ) | 
						
							| 18 | 17 | ffvelcdmda |  |-  ( ( ( ph /\ f e. dom S.1 ) /\ y e. RR ) -> ( f ` y ) e. RR ) | 
						
							| 19 |  | rge0ssre |  |-  ( 0 [,) +oo ) C_ RR | 
						
							| 20 |  | fss |  |-  ( ( F : RR --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ RR ) -> F : RR --> RR ) | 
						
							| 21 | 1 19 20 | sylancl |  |-  ( ph -> F : RR --> RR ) | 
						
							| 22 | 21 | adantr |  |-  ( ( ph /\ f e. dom S.1 ) -> F : RR --> RR ) | 
						
							| 23 | 22 | ffvelcdmda |  |-  ( ( ( ph /\ f e. dom S.1 ) /\ y e. RR ) -> ( F ` y ) e. RR ) | 
						
							| 24 | 3 | rpred |  |-  ( ph -> A e. RR ) | 
						
							| 25 | 24 | ad2antrr |  |-  ( ( ( ph /\ f e. dom S.1 ) /\ y e. RR ) -> A e. RR ) | 
						
							| 26 | 3 | rpgt0d |  |-  ( ph -> 0 < A ) | 
						
							| 27 | 26 | ad2antrr |  |-  ( ( ( ph /\ f e. dom S.1 ) /\ y e. RR ) -> 0 < A ) | 
						
							| 28 |  | ledivmul |  |-  ( ( ( f ` y ) e. RR /\ ( F ` y ) e. RR /\ ( A e. RR /\ 0 < A ) ) -> ( ( ( f ` y ) / A ) <_ ( F ` y ) <-> ( f ` y ) <_ ( A x. ( F ` y ) ) ) ) | 
						
							| 29 | 18 23 25 27 28 | syl112anc |  |-  ( ( ( ph /\ f e. dom S.1 ) /\ y e. RR ) -> ( ( ( f ` y ) / A ) <_ ( F ` y ) <-> ( f ` y ) <_ ( A x. ( F ` y ) ) ) ) | 
						
							| 30 | 18 | recnd |  |-  ( ( ( ph /\ f e. dom S.1 ) /\ y e. RR ) -> ( f ` y ) e. CC ) | 
						
							| 31 | 25 | recnd |  |-  ( ( ( ph /\ f e. dom S.1 ) /\ y e. RR ) -> A e. CC ) | 
						
							| 32 | 3 | adantr |  |-  ( ( ph /\ f e. dom S.1 ) -> A e. RR+ ) | 
						
							| 33 | 32 | rpne0d |  |-  ( ( ph /\ f e. dom S.1 ) -> A =/= 0 ) | 
						
							| 34 | 33 | adantr |  |-  ( ( ( ph /\ f e. dom S.1 ) /\ y e. RR ) -> A =/= 0 ) | 
						
							| 35 | 30 31 34 | divrec2d |  |-  ( ( ( ph /\ f e. dom S.1 ) /\ y e. RR ) -> ( ( f ` y ) / A ) = ( ( 1 / A ) x. ( f ` y ) ) ) | 
						
							| 36 | 35 | breq1d |  |-  ( ( ( ph /\ f e. dom S.1 ) /\ y e. RR ) -> ( ( ( f ` y ) / A ) <_ ( F ` y ) <-> ( ( 1 / A ) x. ( f ` y ) ) <_ ( F ` y ) ) ) | 
						
							| 37 | 29 36 | bitr3d |  |-  ( ( ( ph /\ f e. dom S.1 ) /\ y e. RR ) -> ( ( f ` y ) <_ ( A x. ( F ` y ) ) <-> ( ( 1 / A ) x. ( f ` y ) ) <_ ( F ` y ) ) ) | 
						
							| 38 | 37 | ralbidva |  |-  ( ( ph /\ f e. dom S.1 ) -> ( A. y e. RR ( f ` y ) <_ ( A x. ( F ` y ) ) <-> A. y e. RR ( ( 1 / A ) x. ( f ` y ) ) <_ ( F ` y ) ) ) | 
						
							| 39 |  | reex |  |-  RR e. _V | 
						
							| 40 | 39 | a1i |  |-  ( ( ph /\ f e. dom S.1 ) -> RR e. _V ) | 
						
							| 41 |  | ovexd |  |-  ( ( ( ph /\ f e. dom S.1 ) /\ y e. RR ) -> ( A x. ( F ` y ) ) e. _V ) | 
						
							| 42 | 17 | feqmptd |  |-  ( ( ph /\ f e. dom S.1 ) -> f = ( y e. RR |-> ( f ` y ) ) ) | 
						
							| 43 | 3 | ad2antrr |  |-  ( ( ( ph /\ f e. dom S.1 ) /\ y e. RR ) -> A e. RR+ ) | 
						
							| 44 |  | fconstmpt |  |-  ( RR X. { A } ) = ( y e. RR |-> A ) | 
						
							| 45 | 44 | a1i |  |-  ( ( ph /\ f e. dom S.1 ) -> ( RR X. { A } ) = ( y e. RR |-> A ) ) | 
						
							| 46 | 1 | feqmptd |  |-  ( ph -> F = ( y e. RR |-> ( F ` y ) ) ) | 
						
							| 47 | 46 | adantr |  |-  ( ( ph /\ f e. dom S.1 ) -> F = ( y e. RR |-> ( F ` y ) ) ) | 
						
							| 48 | 40 43 23 45 47 | offval2 |  |-  ( ( ph /\ f e. dom S.1 ) -> ( ( RR X. { A } ) oF x. F ) = ( y e. RR |-> ( A x. ( F ` y ) ) ) ) | 
						
							| 49 | 40 18 41 42 48 | ofrfval2 |  |-  ( ( ph /\ f e. dom S.1 ) -> ( f oR <_ ( ( RR X. { A } ) oF x. F ) <-> A. y e. RR ( f ` y ) <_ ( A x. ( F ` y ) ) ) ) | 
						
							| 50 |  | ovexd |  |-  ( ( ( ph /\ f e. dom S.1 ) /\ y e. RR ) -> ( ( 1 / A ) x. ( f ` y ) ) e. _V ) | 
						
							| 51 | 9 | ad2antrr |  |-  ( ( ( ph /\ f e. dom S.1 ) /\ y e. RR ) -> ( 1 / A ) e. RR+ ) | 
						
							| 52 |  | fconstmpt |  |-  ( RR X. { ( 1 / A ) } ) = ( y e. RR |-> ( 1 / A ) ) | 
						
							| 53 | 52 | a1i |  |-  ( ( ph /\ f e. dom S.1 ) -> ( RR X. { ( 1 / A ) } ) = ( y e. RR |-> ( 1 / A ) ) ) | 
						
							| 54 | 40 51 18 53 42 | offval2 |  |-  ( ( ph /\ f e. dom S.1 ) -> ( ( RR X. { ( 1 / A ) } ) oF x. f ) = ( y e. RR |-> ( ( 1 / A ) x. ( f ` y ) ) ) ) | 
						
							| 55 | 40 50 23 54 47 | ofrfval2 |  |-  ( ( ph /\ f e. dom S.1 ) -> ( ( ( RR X. { ( 1 / A ) } ) oF x. f ) oR <_ F <-> A. y e. RR ( ( 1 / A ) x. ( f ` y ) ) <_ ( F ` y ) ) ) | 
						
							| 56 | 38 49 55 | 3bitr4d |  |-  ( ( ph /\ f e. dom S.1 ) -> ( f oR <_ ( ( RR X. { A } ) oF x. F ) <-> ( ( RR X. { ( 1 / A ) } ) oF x. f ) oR <_ F ) ) | 
						
							| 57 | 8 11 | itg1mulc |  |-  ( ( ph /\ f e. dom S.1 ) -> ( S.1 ` ( ( RR X. { ( 1 / A ) } ) oF x. f ) ) = ( ( 1 / A ) x. ( S.1 ` f ) ) ) | 
						
							| 58 |  | itg1cl |  |-  ( f e. dom S.1 -> ( S.1 ` f ) e. RR ) | 
						
							| 59 | 58 | adantl |  |-  ( ( ph /\ f e. dom S.1 ) -> ( S.1 ` f ) e. RR ) | 
						
							| 60 | 59 | recnd |  |-  ( ( ph /\ f e. dom S.1 ) -> ( S.1 ` f ) e. CC ) | 
						
							| 61 | 24 | adantr |  |-  ( ( ph /\ f e. dom S.1 ) -> A e. RR ) | 
						
							| 62 | 61 | recnd |  |-  ( ( ph /\ f e. dom S.1 ) -> A e. CC ) | 
						
							| 63 | 60 62 33 | divrec2d |  |-  ( ( ph /\ f e. dom S.1 ) -> ( ( S.1 ` f ) / A ) = ( ( 1 / A ) x. ( S.1 ` f ) ) ) | 
						
							| 64 | 57 63 | eqtr4d |  |-  ( ( ph /\ f e. dom S.1 ) -> ( S.1 ` ( ( RR X. { ( 1 / A ) } ) oF x. f ) ) = ( ( S.1 ` f ) / A ) ) | 
						
							| 65 | 64 | breq1d |  |-  ( ( ph /\ f e. dom S.1 ) -> ( ( S.1 ` ( ( RR X. { ( 1 / A ) } ) oF x. f ) ) <_ ( S.2 ` F ) <-> ( ( S.1 ` f ) / A ) <_ ( S.2 ` F ) ) ) | 
						
							| 66 | 2 | adantr |  |-  ( ( ph /\ f e. dom S.1 ) -> ( S.2 ` F ) e. RR ) | 
						
							| 67 | 26 | adantr |  |-  ( ( ph /\ f e. dom S.1 ) -> 0 < A ) | 
						
							| 68 |  | ledivmul |  |-  ( ( ( S.1 ` f ) e. RR /\ ( S.2 ` F ) e. RR /\ ( A e. RR /\ 0 < A ) ) -> ( ( ( S.1 ` f ) / A ) <_ ( S.2 ` F ) <-> ( S.1 ` f ) <_ ( A x. ( S.2 ` F ) ) ) ) | 
						
							| 69 | 59 66 61 67 68 | syl112anc |  |-  ( ( ph /\ f e. dom S.1 ) -> ( ( ( S.1 ` f ) / A ) <_ ( S.2 ` F ) <-> ( S.1 ` f ) <_ ( A x. ( S.2 ` F ) ) ) ) | 
						
							| 70 | 65 69 | bitr2d |  |-  ( ( ph /\ f e. dom S.1 ) -> ( ( S.1 ` f ) <_ ( A x. ( S.2 ` F ) ) <-> ( S.1 ` ( ( RR X. { ( 1 / A ) } ) oF x. f ) ) <_ ( S.2 ` F ) ) ) | 
						
							| 71 | 15 56 70 | 3imtr4d |  |-  ( ( ph /\ f e. dom S.1 ) -> ( f oR <_ ( ( RR X. { A } ) oF x. F ) -> ( S.1 ` f ) <_ ( A x. ( S.2 ` F ) ) ) ) | 
						
							| 72 | 71 | ralrimiva |  |-  ( ph -> A. f e. dom S.1 ( f oR <_ ( ( RR X. { A } ) oF x. F ) -> ( S.1 ` f ) <_ ( A x. ( S.2 ` F ) ) ) ) | 
						
							| 73 |  | ge0mulcl |  |-  ( ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) -> ( x x. y ) e. ( 0 [,) +oo ) ) | 
						
							| 74 | 73 | adantl |  |-  ( ( ph /\ ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) ) -> ( x x. y ) e. ( 0 [,) +oo ) ) | 
						
							| 75 |  | fconstg |  |-  ( A e. RR+ -> ( RR X. { A } ) : RR --> { A } ) | 
						
							| 76 | 3 75 | syl |  |-  ( ph -> ( RR X. { A } ) : RR --> { A } ) | 
						
							| 77 |  | rpre |  |-  ( A e. RR+ -> A e. RR ) | 
						
							| 78 |  | rpge0 |  |-  ( A e. RR+ -> 0 <_ A ) | 
						
							| 79 |  | elrege0 |  |-  ( A e. ( 0 [,) +oo ) <-> ( A e. RR /\ 0 <_ A ) ) | 
						
							| 80 | 77 78 79 | sylanbrc |  |-  ( A e. RR+ -> A e. ( 0 [,) +oo ) ) | 
						
							| 81 | 3 80 | syl |  |-  ( ph -> A e. ( 0 [,) +oo ) ) | 
						
							| 82 | 81 | snssd |  |-  ( ph -> { A } C_ ( 0 [,) +oo ) ) | 
						
							| 83 | 76 82 | fssd |  |-  ( ph -> ( RR X. { A } ) : RR --> ( 0 [,) +oo ) ) | 
						
							| 84 | 39 | a1i |  |-  ( ph -> RR e. _V ) | 
						
							| 85 |  | inidm |  |-  ( RR i^i RR ) = RR | 
						
							| 86 | 74 83 1 84 84 85 | off |  |-  ( ph -> ( ( RR X. { A } ) oF x. F ) : RR --> ( 0 [,) +oo ) ) | 
						
							| 87 |  | fss |  |-  ( ( ( ( RR X. { A } ) oF x. F ) : RR --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ ( 0 [,] +oo ) ) -> ( ( RR X. { A } ) oF x. F ) : RR --> ( 0 [,] +oo ) ) | 
						
							| 88 | 86 4 87 | sylancl |  |-  ( ph -> ( ( RR X. { A } ) oF x. F ) : RR --> ( 0 [,] +oo ) ) | 
						
							| 89 | 24 2 | remulcld |  |-  ( ph -> ( A x. ( S.2 ` F ) ) e. RR ) | 
						
							| 90 | 89 | rexrd |  |-  ( ph -> ( A x. ( S.2 ` F ) ) e. RR* ) | 
						
							| 91 |  | itg2leub |  |-  ( ( ( ( RR X. { A } ) oF x. F ) : RR --> ( 0 [,] +oo ) /\ ( A x. ( S.2 ` F ) ) e. RR* ) -> ( ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) <_ ( A x. ( S.2 ` F ) ) <-> A. f e. dom S.1 ( f oR <_ ( ( RR X. { A } ) oF x. F ) -> ( S.1 ` f ) <_ ( A x. ( S.2 ` F ) ) ) ) ) | 
						
							| 92 | 88 90 91 | syl2anc |  |-  ( ph -> ( ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) <_ ( A x. ( S.2 ` F ) ) <-> A. f e. dom S.1 ( f oR <_ ( ( RR X. { A } ) oF x. F ) -> ( S.1 ` f ) <_ ( A x. ( S.2 ` F ) ) ) ) ) | 
						
							| 93 | 72 92 | mpbird |  |-  ( ph -> ( S.2 ` ( ( RR X. { A } ) oF x. F ) ) <_ ( A x. ( S.2 ` F ) ) ) |