Step |
Hyp |
Ref |
Expression |
1 |
|
nnre |
|- ( n e. NN -> n e. RR ) |
2 |
1
|
ad2antlr |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) /\ ( S.2 ` F ) = +oo ) -> n e. RR ) |
3 |
2
|
ltpnfd |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) /\ ( S.2 ` F ) = +oo ) -> n < +oo ) |
4 |
|
iftrue |
|- ( ( S.2 ` F ) = +oo -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) = n ) |
5 |
4
|
adantl |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) /\ ( S.2 ` F ) = +oo ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) = n ) |
6 |
|
simpr |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) /\ ( S.2 ` F ) = +oo ) -> ( S.2 ` F ) = +oo ) |
7 |
3 5 6
|
3brtr4d |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) /\ ( S.2 ` F ) = +oo ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.2 ` F ) ) |
8 |
|
iffalse |
|- ( -. ( S.2 ` F ) = +oo -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) = ( ( S.2 ` F ) - ( 1 / n ) ) ) |
9 |
8
|
adantl |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) /\ -. ( S.2 ` F ) = +oo ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) = ( ( S.2 ` F ) - ( 1 / n ) ) ) |
10 |
|
itg2cl |
|- ( F : RR --> ( 0 [,] +oo ) -> ( S.2 ` F ) e. RR* ) |
11 |
|
xrrebnd |
|- ( ( S.2 ` F ) e. RR* -> ( ( S.2 ` F ) e. RR <-> ( -oo < ( S.2 ` F ) /\ ( S.2 ` F ) < +oo ) ) ) |
12 |
10 11
|
syl |
|- ( F : RR --> ( 0 [,] +oo ) -> ( ( S.2 ` F ) e. RR <-> ( -oo < ( S.2 ` F ) /\ ( S.2 ` F ) < +oo ) ) ) |
13 |
|
itg2ge0 |
|- ( F : RR --> ( 0 [,] +oo ) -> 0 <_ ( S.2 ` F ) ) |
14 |
|
mnflt0 |
|- -oo < 0 |
15 |
|
mnfxr |
|- -oo e. RR* |
16 |
|
0xr |
|- 0 e. RR* |
17 |
|
xrltletr |
|- ( ( -oo e. RR* /\ 0 e. RR* /\ ( S.2 ` F ) e. RR* ) -> ( ( -oo < 0 /\ 0 <_ ( S.2 ` F ) ) -> -oo < ( S.2 ` F ) ) ) |
18 |
15 16 10 17
|
mp3an12i |
|- ( F : RR --> ( 0 [,] +oo ) -> ( ( -oo < 0 /\ 0 <_ ( S.2 ` F ) ) -> -oo < ( S.2 ` F ) ) ) |
19 |
14 18
|
mpani |
|- ( F : RR --> ( 0 [,] +oo ) -> ( 0 <_ ( S.2 ` F ) -> -oo < ( S.2 ` F ) ) ) |
20 |
13 19
|
mpd |
|- ( F : RR --> ( 0 [,] +oo ) -> -oo < ( S.2 ` F ) ) |
21 |
20
|
biantrurd |
|- ( F : RR --> ( 0 [,] +oo ) -> ( ( S.2 ` F ) < +oo <-> ( -oo < ( S.2 ` F ) /\ ( S.2 ` F ) < +oo ) ) ) |
22 |
|
nltpnft |
|- ( ( S.2 ` F ) e. RR* -> ( ( S.2 ` F ) = +oo <-> -. ( S.2 ` F ) < +oo ) ) |
23 |
10 22
|
syl |
|- ( F : RR --> ( 0 [,] +oo ) -> ( ( S.2 ` F ) = +oo <-> -. ( S.2 ` F ) < +oo ) ) |
24 |
23
|
con2bid |
|- ( F : RR --> ( 0 [,] +oo ) -> ( ( S.2 ` F ) < +oo <-> -. ( S.2 ` F ) = +oo ) ) |
25 |
12 21 24
|
3bitr2rd |
|- ( F : RR --> ( 0 [,] +oo ) -> ( -. ( S.2 ` F ) = +oo <-> ( S.2 ` F ) e. RR ) ) |
26 |
25
|
biimpa |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ -. ( S.2 ` F ) = +oo ) -> ( S.2 ` F ) e. RR ) |
27 |
26
|
adantlr |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) /\ -. ( S.2 ` F ) = +oo ) -> ( S.2 ` F ) e. RR ) |
28 |
|
nnrp |
|- ( n e. NN -> n e. RR+ ) |
29 |
28
|
rpreccld |
|- ( n e. NN -> ( 1 / n ) e. RR+ ) |
30 |
29
|
ad2antlr |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) /\ -. ( S.2 ` F ) = +oo ) -> ( 1 / n ) e. RR+ ) |
31 |
27 30
|
ltsubrpd |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) /\ -. ( S.2 ` F ) = +oo ) -> ( ( S.2 ` F ) - ( 1 / n ) ) < ( S.2 ` F ) ) |
32 |
9 31
|
eqbrtrd |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) /\ -. ( S.2 ` F ) = +oo ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.2 ` F ) ) |
33 |
7 32
|
pm2.61dan |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.2 ` F ) ) |
34 |
|
nnrecre |
|- ( n e. NN -> ( 1 / n ) e. RR ) |
35 |
34
|
ad2antlr |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) /\ -. ( S.2 ` F ) = +oo ) -> ( 1 / n ) e. RR ) |
36 |
27 35
|
resubcld |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) /\ -. ( S.2 ` F ) = +oo ) -> ( ( S.2 ` F ) - ( 1 / n ) ) e. RR ) |
37 |
2 36
|
ifclda |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR ) |
38 |
37
|
rexrd |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR* ) |
39 |
10
|
adantr |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) -> ( S.2 ` F ) e. RR* ) |
40 |
|
xrltnle |
|- ( ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR* /\ ( S.2 ` F ) e. RR* ) -> ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.2 ` F ) <-> -. ( S.2 ` F ) <_ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) ) |
41 |
38 39 40
|
syl2anc |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) -> ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.2 ` F ) <-> -. ( S.2 ` F ) <_ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) ) |
42 |
33 41
|
mpbid |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) -> -. ( S.2 ` F ) <_ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) |
43 |
|
itg2leub |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR* ) -> ( ( S.2 ` F ) <_ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <-> A. f e. dom S.1 ( f oR <_ F -> ( S.1 ` f ) <_ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) ) ) |
44 |
38 43
|
syldan |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) -> ( ( S.2 ` F ) <_ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <-> A. f e. dom S.1 ( f oR <_ F -> ( S.1 ` f ) <_ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) ) ) |
45 |
42 44
|
mtbid |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) -> -. A. f e. dom S.1 ( f oR <_ F -> ( S.1 ` f ) <_ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) ) |
46 |
|
rexanali |
|- ( E. f e. dom S.1 ( f oR <_ F /\ -. ( S.1 ` f ) <_ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) <-> -. A. f e. dom S.1 ( f oR <_ F -> ( S.1 ` f ) <_ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) ) |
47 |
45 46
|
sylibr |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) -> E. f e. dom S.1 ( f oR <_ F /\ -. ( S.1 ` f ) <_ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) ) |
48 |
|
itg1cl |
|- ( f e. dom S.1 -> ( S.1 ` f ) e. RR ) |
49 |
|
ltnle |
|- ( ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR /\ ( S.1 ` f ) e. RR ) -> ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` f ) <-> -. ( S.1 ` f ) <_ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) ) |
50 |
37 48 49
|
syl2an |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) /\ f e. dom S.1 ) -> ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` f ) <-> -. ( S.1 ` f ) <_ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) ) |
51 |
50
|
anbi2d |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) /\ f e. dom S.1 ) -> ( ( f oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` f ) ) <-> ( f oR <_ F /\ -. ( S.1 ` f ) <_ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) ) ) |
52 |
51
|
rexbidva |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) -> ( E. f e. dom S.1 ( f oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` f ) ) <-> E. f e. dom S.1 ( f oR <_ F /\ -. ( S.1 ` f ) <_ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) ) ) |
53 |
47 52
|
mpbird |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) -> E. f e. dom S.1 ( f oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` f ) ) ) |
54 |
53
|
ralrimiva |
|- ( F : RR --> ( 0 [,] +oo ) -> A. n e. NN E. f e. dom S.1 ( f oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` f ) ) ) |
55 |
|
ovex |
|- ( RR ^m RR ) e. _V |
56 |
|
i1ff |
|- ( x e. dom S.1 -> x : RR --> RR ) |
57 |
|
reex |
|- RR e. _V |
58 |
57 57
|
elmap |
|- ( x e. ( RR ^m RR ) <-> x : RR --> RR ) |
59 |
56 58
|
sylibr |
|- ( x e. dom S.1 -> x e. ( RR ^m RR ) ) |
60 |
59
|
ssriv |
|- dom S.1 C_ ( RR ^m RR ) |
61 |
55 60
|
ssexi |
|- dom S.1 e. _V |
62 |
|
nnenom |
|- NN ~~ _om |
63 |
|
breq1 |
|- ( f = ( g ` n ) -> ( f oR <_ F <-> ( g ` n ) oR <_ F ) ) |
64 |
|
fveq2 |
|- ( f = ( g ` n ) -> ( S.1 ` f ) = ( S.1 ` ( g ` n ) ) ) |
65 |
64
|
breq2d |
|- ( f = ( g ` n ) -> ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` f ) <-> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) |
66 |
63 65
|
anbi12d |
|- ( f = ( g ` n ) -> ( ( f oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` f ) ) <-> ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) |
67 |
61 62 66
|
axcc4 |
|- ( A. n e. NN E. f e. dom S.1 ( f oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` f ) ) -> E. g ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) |
68 |
54 67
|
syl |
|- ( F : RR --> ( 0 [,] +oo ) -> E. g ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) |
69 |
|
simprl |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> g : NN --> dom S.1 ) |
70 |
|
simpl |
|- ( ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) -> ( g ` n ) oR <_ F ) |
71 |
70
|
ralimi |
|- ( A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) -> A. n e. NN ( g ` n ) oR <_ F ) |
72 |
71
|
ad2antll |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> A. n e. NN ( g ` n ) oR <_ F ) |
73 |
10
|
adantr |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> ( S.2 ` F ) e. RR* ) |
74 |
|
ffvelrn |
|- ( ( g : NN --> dom S.1 /\ n e. NN ) -> ( g ` n ) e. dom S.1 ) |
75 |
|
itg1cl |
|- ( ( g ` n ) e. dom S.1 -> ( S.1 ` ( g ` n ) ) e. RR ) |
76 |
74 75
|
syl |
|- ( ( g : NN --> dom S.1 /\ n e. NN ) -> ( S.1 ` ( g ` n ) ) e. RR ) |
77 |
76
|
fmpttd |
|- ( g : NN --> dom S.1 -> ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) : NN --> RR ) |
78 |
77
|
ad2antrl |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) : NN --> RR ) |
79 |
78
|
frnd |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) C_ RR ) |
80 |
|
ressxr |
|- RR C_ RR* |
81 |
79 80
|
sstrdi |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) C_ RR* ) |
82 |
|
supxrcl |
|- ( ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) C_ RR* -> sup ( ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) , RR* , < ) e. RR* ) |
83 |
81 82
|
syl |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> sup ( ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) , RR* , < ) e. RR* ) |
84 |
38
|
adantlr |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR* ) |
85 |
76
|
adantll |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> ( S.1 ` ( g ` n ) ) e. RR ) |
86 |
85
|
rexrd |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> ( S.1 ` ( g ` n ) ) e. RR* ) |
87 |
|
xrltle |
|- ( ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR* /\ ( S.1 ` ( g ` n ) ) e. RR* ) -> ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ ( S.1 ` ( g ` n ) ) ) ) |
88 |
84 86 87
|
syl2anc |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ ( S.1 ` ( g ` n ) ) ) ) |
89 |
|
2fveq3 |
|- ( n = m -> ( S.1 ` ( g ` n ) ) = ( S.1 ` ( g ` m ) ) ) |
90 |
89
|
cbvmptv |
|- ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) = ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) |
91 |
90
|
rneqi |
|- ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) = ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) |
92 |
77
|
adantl |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) -> ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) : NN --> RR ) |
93 |
92
|
frnd |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) -> ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) C_ RR ) |
94 |
93 80
|
sstrdi |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) -> ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) C_ RR* ) |
95 |
94
|
adantr |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) C_ RR* ) |
96 |
91 95
|
eqsstrrid |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) C_ RR* ) |
97 |
|
2fveq3 |
|- ( m = n -> ( S.1 ` ( g ` m ) ) = ( S.1 ` ( g ` n ) ) ) |
98 |
|
eqid |
|- ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) = ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) |
99 |
|
fvex |
|- ( S.1 ` ( g ` n ) ) e. _V |
100 |
97 98 99
|
fvmpt |
|- ( n e. NN -> ( ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) ` n ) = ( S.1 ` ( g ` n ) ) ) |
101 |
|
fvex |
|- ( S.1 ` ( g ` m ) ) e. _V |
102 |
101 98
|
fnmpti |
|- ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) Fn NN |
103 |
|
fnfvelrn |
|- ( ( ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) Fn NN /\ n e. NN ) -> ( ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) ` n ) e. ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) ) |
104 |
102 103
|
mpan |
|- ( n e. NN -> ( ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) ` n ) e. ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) ) |
105 |
100 104
|
eqeltrrd |
|- ( n e. NN -> ( S.1 ` ( g ` n ) ) e. ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) ) |
106 |
105
|
adantl |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> ( S.1 ` ( g ` n ) ) e. ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) ) |
107 |
|
supxrub |
|- ( ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) C_ RR* /\ ( S.1 ` ( g ` n ) ) e. ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) ) -> ( S.1 ` ( g ` n ) ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) |
108 |
96 106 107
|
syl2anc |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> ( S.1 ` ( g ` n ) ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) |
109 |
91
|
supeq1i |
|- sup ( ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) , RR* , < ) = sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) |
110 |
95 82
|
syl |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> sup ( ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) , RR* , < ) e. RR* ) |
111 |
109 110
|
eqeltrrid |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) e. RR* ) |
112 |
|
xrletr |
|- ( ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR* /\ ( S.1 ` ( g ` n ) ) e. RR* /\ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) e. RR* ) -> ( ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ ( S.1 ` ( g ` n ) ) /\ ( S.1 ` ( g ` n ) ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) ) |
113 |
84 86 111 112
|
syl3anc |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> ( ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ ( S.1 ` ( g ` n ) ) /\ ( S.1 ` ( g ` n ) ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) ) |
114 |
108 113
|
mpan2d |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ ( S.1 ` ( g ` n ) ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) ) |
115 |
88 114
|
syld |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) ) |
116 |
115
|
adantld |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> ( ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) ) |
117 |
116
|
ralimdva |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) -> ( A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) -> A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) ) |
118 |
117
|
impr |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) |
119 |
|
breq2 |
|- ( x = sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) -> ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x <-> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) ) |
120 |
119
|
ralbidv |
|- ( x = sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) -> ( A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x <-> A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) ) |
121 |
|
breq2 |
|- ( x = sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) -> ( ( S.2 ` F ) <_ x <-> ( S.2 ` F ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) ) |
122 |
120 121
|
imbi12d |
|- ( x = sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) -> ( ( A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x -> ( S.2 ` F ) <_ x ) <-> ( A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) -> ( S.2 ` F ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) ) ) |
123 |
|
elxr |
|- ( x e. RR* <-> ( x e. RR \/ x = +oo \/ x = -oo ) ) |
124 |
|
simplrl |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ ( S.2 ` F ) = +oo ) -> x e. RR ) |
125 |
|
arch |
|- ( x e. RR -> E. n e. NN x < n ) |
126 |
124 125
|
syl |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ ( S.2 ` F ) = +oo ) -> E. n e. NN x < n ) |
127 |
4
|
adantl |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ ( S.2 ` F ) = +oo ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) = n ) |
128 |
127
|
breq2d |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ ( S.2 ` F ) = +oo ) -> ( x < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <-> x < n ) ) |
129 |
128
|
rexbidv |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ ( S.2 ` F ) = +oo ) -> ( E. n e. NN x < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <-> E. n e. NN x < n ) ) |
130 |
126 129
|
mpbird |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ ( S.2 ` F ) = +oo ) -> E. n e. NN x < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) |
131 |
26
|
adantlr |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) -> ( S.2 ` F ) e. RR ) |
132 |
|
simplrl |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) -> x e. RR ) |
133 |
131 132
|
resubcld |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) -> ( ( S.2 ` F ) - x ) e. RR ) |
134 |
|
simplrr |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) -> x < ( S.2 ` F ) ) |
135 |
132 131
|
posdifd |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) -> ( x < ( S.2 ` F ) <-> 0 < ( ( S.2 ` F ) - x ) ) ) |
136 |
134 135
|
mpbid |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) -> 0 < ( ( S.2 ` F ) - x ) ) |
137 |
|
nnrecl |
|- ( ( ( ( S.2 ` F ) - x ) e. RR /\ 0 < ( ( S.2 ` F ) - x ) ) -> E. n e. NN ( 1 / n ) < ( ( S.2 ` F ) - x ) ) |
138 |
133 136 137
|
syl2anc |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) -> E. n e. NN ( 1 / n ) < ( ( S.2 ` F ) - x ) ) |
139 |
34
|
adantl |
|- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) /\ n e. NN ) -> ( 1 / n ) e. RR ) |
140 |
131
|
adantr |
|- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) /\ n e. NN ) -> ( S.2 ` F ) e. RR ) |
141 |
132
|
adantr |
|- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) /\ n e. NN ) -> x e. RR ) |
142 |
|
ltsub13 |
|- ( ( ( 1 / n ) e. RR /\ ( S.2 ` F ) e. RR /\ x e. RR ) -> ( ( 1 / n ) < ( ( S.2 ` F ) - x ) <-> x < ( ( S.2 ` F ) - ( 1 / n ) ) ) ) |
143 |
139 140 141 142
|
syl3anc |
|- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) /\ n e. NN ) -> ( ( 1 / n ) < ( ( S.2 ` F ) - x ) <-> x < ( ( S.2 ` F ) - ( 1 / n ) ) ) ) |
144 |
8
|
ad2antlr |
|- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) /\ n e. NN ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) = ( ( S.2 ` F ) - ( 1 / n ) ) ) |
145 |
144
|
breq2d |
|- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) /\ n e. NN ) -> ( x < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <-> x < ( ( S.2 ` F ) - ( 1 / n ) ) ) ) |
146 |
143 145
|
bitr4d |
|- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) /\ n e. NN ) -> ( ( 1 / n ) < ( ( S.2 ` F ) - x ) <-> x < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) ) |
147 |
146
|
rexbidva |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) -> ( E. n e. NN ( 1 / n ) < ( ( S.2 ` F ) - x ) <-> E. n e. NN x < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) ) |
148 |
138 147
|
mpbid |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) -> E. n e. NN x < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) |
149 |
130 148
|
pm2.61dan |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) -> E. n e. NN x < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) |
150 |
149
|
expr |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ x e. RR ) -> ( x < ( S.2 ` F ) -> E. n e. NN x < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) ) |
151 |
|
rexr |
|- ( x e. RR -> x e. RR* ) |
152 |
|
xrltnle |
|- ( ( x e. RR* /\ ( S.2 ` F ) e. RR* ) -> ( x < ( S.2 ` F ) <-> -. ( S.2 ` F ) <_ x ) ) |
153 |
151 10 152
|
syl2anr |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ x e. RR ) -> ( x < ( S.2 ` F ) <-> -. ( S.2 ` F ) <_ x ) ) |
154 |
151
|
ad2antlr |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ x e. RR ) /\ n e. NN ) -> x e. RR* ) |
155 |
38
|
adantlr |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ x e. RR ) /\ n e. NN ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR* ) |
156 |
|
xrltnle |
|- ( ( x e. RR* /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR* ) -> ( x < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <-> -. if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x ) ) |
157 |
154 155 156
|
syl2anc |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ x e. RR ) /\ n e. NN ) -> ( x < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <-> -. if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x ) ) |
158 |
157
|
rexbidva |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ x e. RR ) -> ( E. n e. NN x < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <-> E. n e. NN -. if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x ) ) |
159 |
|
rexnal |
|- ( E. n e. NN -. if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x <-> -. A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x ) |
160 |
158 159
|
bitrdi |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ x e. RR ) -> ( E. n e. NN x < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <-> -. A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x ) ) |
161 |
150 153 160
|
3imtr3d |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ x e. RR ) -> ( -. ( S.2 ` F ) <_ x -> -. A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x ) ) |
162 |
161
|
con4d |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ x e. RR ) -> ( A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x -> ( S.2 ` F ) <_ x ) ) |
163 |
10
|
adantr |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ x = +oo ) -> ( S.2 ` F ) e. RR* ) |
164 |
|
pnfge |
|- ( ( S.2 ` F ) e. RR* -> ( S.2 ` F ) <_ +oo ) |
165 |
163 164
|
syl |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ x = +oo ) -> ( S.2 ` F ) <_ +oo ) |
166 |
|
simpr |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ x = +oo ) -> x = +oo ) |
167 |
165 166
|
breqtrrd |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ x = +oo ) -> ( S.2 ` F ) <_ x ) |
168 |
167
|
a1d |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ x = +oo ) -> ( A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x -> ( S.2 ` F ) <_ x ) ) |
169 |
|
1nn |
|- 1 e. NN |
170 |
169
|
ne0ii |
|- NN =/= (/) |
171 |
|
r19.2z |
|- ( ( NN =/= (/) /\ A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x ) -> E. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x ) |
172 |
170 171
|
mpan |
|- ( A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x -> E. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x ) |
173 |
37
|
adantlr |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ x = -oo ) /\ n e. NN ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR ) |
174 |
|
mnflt |
|- ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR -> -oo < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) |
175 |
|
rexr |
|- ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR* ) |
176 |
|
xrltnle |
|- ( ( -oo e. RR* /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR* ) -> ( -oo < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <-> -. if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ -oo ) ) |
177 |
15 175 176
|
sylancr |
|- ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR -> ( -oo < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <-> -. if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ -oo ) ) |
178 |
174 177
|
mpbid |
|- ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR -> -. if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ -oo ) |
179 |
173 178
|
syl |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ x = -oo ) /\ n e. NN ) -> -. if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ -oo ) |
180 |
|
simplr |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ x = -oo ) /\ n e. NN ) -> x = -oo ) |
181 |
180
|
breq2d |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ x = -oo ) /\ n e. NN ) -> ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x <-> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ -oo ) ) |
182 |
179 181
|
mtbird |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ x = -oo ) /\ n e. NN ) -> -. if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x ) |
183 |
182
|
nrexdv |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ x = -oo ) -> -. E. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x ) |
184 |
183
|
pm2.21d |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ x = -oo ) -> ( E. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x -> ( S.2 ` F ) <_ x ) ) |
185 |
172 184
|
syl5 |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ x = -oo ) -> ( A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x -> ( S.2 ` F ) <_ x ) ) |
186 |
162 168 185
|
3jaodan |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR \/ x = +oo \/ x = -oo ) ) -> ( A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x -> ( S.2 ` F ) <_ x ) ) |
187 |
123 186
|
sylan2b |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ x e. RR* ) -> ( A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x -> ( S.2 ` F ) <_ x ) ) |
188 |
187
|
ralrimiva |
|- ( F : RR --> ( 0 [,] +oo ) -> A. x e. RR* ( A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x -> ( S.2 ` F ) <_ x ) ) |
189 |
188
|
adantr |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> A. x e. RR* ( A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x -> ( S.2 ` F ) <_ x ) ) |
190 |
109 83
|
eqeltrrid |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) e. RR* ) |
191 |
122 189 190
|
rspcdva |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> ( A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) -> ( S.2 ` F ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) ) |
192 |
118 191
|
mpd |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> ( S.2 ` F ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) |
193 |
192 109
|
breqtrrdi |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> ( S.2 ` F ) <_ sup ( ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) , RR* , < ) ) |
194 |
|
itg2ub |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g ` n ) e. dom S.1 /\ ( g ` n ) oR <_ F ) -> ( S.1 ` ( g ` n ) ) <_ ( S.2 ` F ) ) |
195 |
194
|
3expia |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g ` n ) e. dom S.1 ) -> ( ( g ` n ) oR <_ F -> ( S.1 ` ( g ` n ) ) <_ ( S.2 ` F ) ) ) |
196 |
74 195
|
sylan2 |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ n e. NN ) ) -> ( ( g ` n ) oR <_ F -> ( S.1 ` ( g ` n ) ) <_ ( S.2 ` F ) ) ) |
197 |
196
|
anassrs |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> ( ( g ` n ) oR <_ F -> ( S.1 ` ( g ` n ) ) <_ ( S.2 ` F ) ) ) |
198 |
197
|
adantrd |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> ( ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) -> ( S.1 ` ( g ` n ) ) <_ ( S.2 ` F ) ) ) |
199 |
198
|
ralimdva |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) -> ( A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) -> A. n e. NN ( S.1 ` ( g ` n ) ) <_ ( S.2 ` F ) ) ) |
200 |
199
|
impr |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> A. n e. NN ( S.1 ` ( g ` n ) ) <_ ( S.2 ` F ) ) |
201 |
|
eqid |
|- ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) = ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) |
202 |
89 201 101
|
fvmpt |
|- ( m e. NN -> ( ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) ` m ) = ( S.1 ` ( g ` m ) ) ) |
203 |
202
|
breq1d |
|- ( m e. NN -> ( ( ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) ` m ) <_ ( S.2 ` F ) <-> ( S.1 ` ( g ` m ) ) <_ ( S.2 ` F ) ) ) |
204 |
203
|
ralbiia |
|- ( A. m e. NN ( ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) ` m ) <_ ( S.2 ` F ) <-> A. m e. NN ( S.1 ` ( g ` m ) ) <_ ( S.2 ` F ) ) |
205 |
89
|
breq1d |
|- ( n = m -> ( ( S.1 ` ( g ` n ) ) <_ ( S.2 ` F ) <-> ( S.1 ` ( g ` m ) ) <_ ( S.2 ` F ) ) ) |
206 |
205
|
cbvralvw |
|- ( A. n e. NN ( S.1 ` ( g ` n ) ) <_ ( S.2 ` F ) <-> A. m e. NN ( S.1 ` ( g ` m ) ) <_ ( S.2 ` F ) ) |
207 |
204 206
|
bitr4i |
|- ( A. m e. NN ( ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) ` m ) <_ ( S.2 ` F ) <-> A. n e. NN ( S.1 ` ( g ` n ) ) <_ ( S.2 ` F ) ) |
208 |
200 207
|
sylibr |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> A. m e. NN ( ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) ` m ) <_ ( S.2 ` F ) ) |
209 |
|
ffn |
|- ( ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) : NN --> RR -> ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) Fn NN ) |
210 |
|
breq1 |
|- ( z = ( ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) ` m ) -> ( z <_ ( S.2 ` F ) <-> ( ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) ` m ) <_ ( S.2 ` F ) ) ) |
211 |
210
|
ralrn |
|- ( ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) Fn NN -> ( A. z e. ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) z <_ ( S.2 ` F ) <-> A. m e. NN ( ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) ` m ) <_ ( S.2 ` F ) ) ) |
212 |
78 209 211
|
3syl |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> ( A. z e. ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) z <_ ( S.2 ` F ) <-> A. m e. NN ( ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) ` m ) <_ ( S.2 ` F ) ) ) |
213 |
208 212
|
mpbird |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> A. z e. ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) z <_ ( S.2 ` F ) ) |
214 |
|
supxrleub |
|- ( ( ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) C_ RR* /\ ( S.2 ` F ) e. RR* ) -> ( sup ( ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) , RR* , < ) <_ ( S.2 ` F ) <-> A. z e. ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) z <_ ( S.2 ` F ) ) ) |
215 |
81 73 214
|
syl2anc |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> ( sup ( ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) , RR* , < ) <_ ( S.2 ` F ) <-> A. z e. ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) z <_ ( S.2 ` F ) ) ) |
216 |
213 215
|
mpbird |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> sup ( ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) , RR* , < ) <_ ( S.2 ` F ) ) |
217 |
73 83 193 216
|
xrletrid |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> ( S.2 ` F ) = sup ( ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) , RR* , < ) ) |
218 |
69 72 217
|
3jca |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> ( g : NN --> dom S.1 /\ A. n e. NN ( g ` n ) oR <_ F /\ ( S.2 ` F ) = sup ( ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) , RR* , < ) ) ) |
219 |
218
|
ex |
|- ( F : RR --> ( 0 [,] +oo ) -> ( ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) -> ( g : NN --> dom S.1 /\ A. n e. NN ( g ` n ) oR <_ F /\ ( S.2 ` F ) = sup ( ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) , RR* , < ) ) ) ) |
220 |
219
|
eximdv |
|- ( F : RR --> ( 0 [,] +oo ) -> ( E. g ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) -> E. g ( g : NN --> dom S.1 /\ A. n e. NN ( g ` n ) oR <_ F /\ ( S.2 ` F ) = sup ( ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) , RR* , < ) ) ) ) |
221 |
68 220
|
mpd |
|- ( F : RR --> ( 0 [,] +oo ) -> E. g ( g : NN --> dom S.1 /\ A. n e. NN ( g ` n ) oR <_ F /\ ( S.2 ` F ) = sup ( ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) , RR* , < ) ) ) |