| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnre |
|- ( n e. NN -> n e. RR ) |
| 2 |
1
|
ad2antlr |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) /\ ( S.2 ` F ) = +oo ) -> n e. RR ) |
| 3 |
2
|
ltpnfd |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) /\ ( S.2 ` F ) = +oo ) -> n < +oo ) |
| 4 |
|
iftrue |
|- ( ( S.2 ` F ) = +oo -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) = n ) |
| 5 |
4
|
adantl |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) /\ ( S.2 ` F ) = +oo ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) = n ) |
| 6 |
|
simpr |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) /\ ( S.2 ` F ) = +oo ) -> ( S.2 ` F ) = +oo ) |
| 7 |
3 5 6
|
3brtr4d |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) /\ ( S.2 ` F ) = +oo ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.2 ` F ) ) |
| 8 |
|
iffalse |
|- ( -. ( S.2 ` F ) = +oo -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) = ( ( S.2 ` F ) - ( 1 / n ) ) ) |
| 9 |
8
|
adantl |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) /\ -. ( S.2 ` F ) = +oo ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) = ( ( S.2 ` F ) - ( 1 / n ) ) ) |
| 10 |
|
itg2cl |
|- ( F : RR --> ( 0 [,] +oo ) -> ( S.2 ` F ) e. RR* ) |
| 11 |
|
xrrebnd |
|- ( ( S.2 ` F ) e. RR* -> ( ( S.2 ` F ) e. RR <-> ( -oo < ( S.2 ` F ) /\ ( S.2 ` F ) < +oo ) ) ) |
| 12 |
10 11
|
syl |
|- ( F : RR --> ( 0 [,] +oo ) -> ( ( S.2 ` F ) e. RR <-> ( -oo < ( S.2 ` F ) /\ ( S.2 ` F ) < +oo ) ) ) |
| 13 |
|
itg2ge0 |
|- ( F : RR --> ( 0 [,] +oo ) -> 0 <_ ( S.2 ` F ) ) |
| 14 |
|
mnflt0 |
|- -oo < 0 |
| 15 |
|
mnfxr |
|- -oo e. RR* |
| 16 |
|
0xr |
|- 0 e. RR* |
| 17 |
|
xrltletr |
|- ( ( -oo e. RR* /\ 0 e. RR* /\ ( S.2 ` F ) e. RR* ) -> ( ( -oo < 0 /\ 0 <_ ( S.2 ` F ) ) -> -oo < ( S.2 ` F ) ) ) |
| 18 |
15 16 10 17
|
mp3an12i |
|- ( F : RR --> ( 0 [,] +oo ) -> ( ( -oo < 0 /\ 0 <_ ( S.2 ` F ) ) -> -oo < ( S.2 ` F ) ) ) |
| 19 |
14 18
|
mpani |
|- ( F : RR --> ( 0 [,] +oo ) -> ( 0 <_ ( S.2 ` F ) -> -oo < ( S.2 ` F ) ) ) |
| 20 |
13 19
|
mpd |
|- ( F : RR --> ( 0 [,] +oo ) -> -oo < ( S.2 ` F ) ) |
| 21 |
20
|
biantrurd |
|- ( F : RR --> ( 0 [,] +oo ) -> ( ( S.2 ` F ) < +oo <-> ( -oo < ( S.2 ` F ) /\ ( S.2 ` F ) < +oo ) ) ) |
| 22 |
|
nltpnft |
|- ( ( S.2 ` F ) e. RR* -> ( ( S.2 ` F ) = +oo <-> -. ( S.2 ` F ) < +oo ) ) |
| 23 |
10 22
|
syl |
|- ( F : RR --> ( 0 [,] +oo ) -> ( ( S.2 ` F ) = +oo <-> -. ( S.2 ` F ) < +oo ) ) |
| 24 |
23
|
con2bid |
|- ( F : RR --> ( 0 [,] +oo ) -> ( ( S.2 ` F ) < +oo <-> -. ( S.2 ` F ) = +oo ) ) |
| 25 |
12 21 24
|
3bitr2rd |
|- ( F : RR --> ( 0 [,] +oo ) -> ( -. ( S.2 ` F ) = +oo <-> ( S.2 ` F ) e. RR ) ) |
| 26 |
25
|
biimpa |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ -. ( S.2 ` F ) = +oo ) -> ( S.2 ` F ) e. RR ) |
| 27 |
26
|
adantlr |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) /\ -. ( S.2 ` F ) = +oo ) -> ( S.2 ` F ) e. RR ) |
| 28 |
|
nnrp |
|- ( n e. NN -> n e. RR+ ) |
| 29 |
28
|
rpreccld |
|- ( n e. NN -> ( 1 / n ) e. RR+ ) |
| 30 |
29
|
ad2antlr |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) /\ -. ( S.2 ` F ) = +oo ) -> ( 1 / n ) e. RR+ ) |
| 31 |
27 30
|
ltsubrpd |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) /\ -. ( S.2 ` F ) = +oo ) -> ( ( S.2 ` F ) - ( 1 / n ) ) < ( S.2 ` F ) ) |
| 32 |
9 31
|
eqbrtrd |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) /\ -. ( S.2 ` F ) = +oo ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.2 ` F ) ) |
| 33 |
7 32
|
pm2.61dan |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.2 ` F ) ) |
| 34 |
|
nnrecre |
|- ( n e. NN -> ( 1 / n ) e. RR ) |
| 35 |
34
|
ad2antlr |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) /\ -. ( S.2 ` F ) = +oo ) -> ( 1 / n ) e. RR ) |
| 36 |
27 35
|
resubcld |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) /\ -. ( S.2 ` F ) = +oo ) -> ( ( S.2 ` F ) - ( 1 / n ) ) e. RR ) |
| 37 |
2 36
|
ifclda |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR ) |
| 38 |
37
|
rexrd |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR* ) |
| 39 |
10
|
adantr |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) -> ( S.2 ` F ) e. RR* ) |
| 40 |
|
xrltnle |
|- ( ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR* /\ ( S.2 ` F ) e. RR* ) -> ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.2 ` F ) <-> -. ( S.2 ` F ) <_ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) ) |
| 41 |
38 39 40
|
syl2anc |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) -> ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.2 ` F ) <-> -. ( S.2 ` F ) <_ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) ) |
| 42 |
33 41
|
mpbid |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) -> -. ( S.2 ` F ) <_ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) |
| 43 |
|
itg2leub |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR* ) -> ( ( S.2 ` F ) <_ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <-> A. f e. dom S.1 ( f oR <_ F -> ( S.1 ` f ) <_ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) ) ) |
| 44 |
38 43
|
syldan |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) -> ( ( S.2 ` F ) <_ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <-> A. f e. dom S.1 ( f oR <_ F -> ( S.1 ` f ) <_ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) ) ) |
| 45 |
42 44
|
mtbid |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) -> -. A. f e. dom S.1 ( f oR <_ F -> ( S.1 ` f ) <_ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) ) |
| 46 |
|
rexanali |
|- ( E. f e. dom S.1 ( f oR <_ F /\ -. ( S.1 ` f ) <_ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) <-> -. A. f e. dom S.1 ( f oR <_ F -> ( S.1 ` f ) <_ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) ) |
| 47 |
45 46
|
sylibr |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) -> E. f e. dom S.1 ( f oR <_ F /\ -. ( S.1 ` f ) <_ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) ) |
| 48 |
|
itg1cl |
|- ( f e. dom S.1 -> ( S.1 ` f ) e. RR ) |
| 49 |
|
ltnle |
|- ( ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR /\ ( S.1 ` f ) e. RR ) -> ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` f ) <-> -. ( S.1 ` f ) <_ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) ) |
| 50 |
37 48 49
|
syl2an |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) /\ f e. dom S.1 ) -> ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` f ) <-> -. ( S.1 ` f ) <_ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) ) |
| 51 |
50
|
anbi2d |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) /\ f e. dom S.1 ) -> ( ( f oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` f ) ) <-> ( f oR <_ F /\ -. ( S.1 ` f ) <_ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) ) ) |
| 52 |
51
|
rexbidva |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) -> ( E. f e. dom S.1 ( f oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` f ) ) <-> E. f e. dom S.1 ( f oR <_ F /\ -. ( S.1 ` f ) <_ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) ) ) |
| 53 |
47 52
|
mpbird |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ n e. NN ) -> E. f e. dom S.1 ( f oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` f ) ) ) |
| 54 |
53
|
ralrimiva |
|- ( F : RR --> ( 0 [,] +oo ) -> A. n e. NN E. f e. dom S.1 ( f oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` f ) ) ) |
| 55 |
|
ovex |
|- ( RR ^m RR ) e. _V |
| 56 |
|
i1ff |
|- ( x e. dom S.1 -> x : RR --> RR ) |
| 57 |
|
reex |
|- RR e. _V |
| 58 |
57 57
|
elmap |
|- ( x e. ( RR ^m RR ) <-> x : RR --> RR ) |
| 59 |
56 58
|
sylibr |
|- ( x e. dom S.1 -> x e. ( RR ^m RR ) ) |
| 60 |
59
|
ssriv |
|- dom S.1 C_ ( RR ^m RR ) |
| 61 |
55 60
|
ssexi |
|- dom S.1 e. _V |
| 62 |
|
nnenom |
|- NN ~~ _om |
| 63 |
|
breq1 |
|- ( f = ( g ` n ) -> ( f oR <_ F <-> ( g ` n ) oR <_ F ) ) |
| 64 |
|
fveq2 |
|- ( f = ( g ` n ) -> ( S.1 ` f ) = ( S.1 ` ( g ` n ) ) ) |
| 65 |
64
|
breq2d |
|- ( f = ( g ` n ) -> ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` f ) <-> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) |
| 66 |
63 65
|
anbi12d |
|- ( f = ( g ` n ) -> ( ( f oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` f ) ) <-> ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) |
| 67 |
61 62 66
|
axcc4 |
|- ( A. n e. NN E. f e. dom S.1 ( f oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` f ) ) -> E. g ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) |
| 68 |
54 67
|
syl |
|- ( F : RR --> ( 0 [,] +oo ) -> E. g ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) |
| 69 |
|
simprl |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> g : NN --> dom S.1 ) |
| 70 |
|
simpl |
|- ( ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) -> ( g ` n ) oR <_ F ) |
| 71 |
70
|
ralimi |
|- ( A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) -> A. n e. NN ( g ` n ) oR <_ F ) |
| 72 |
71
|
ad2antll |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> A. n e. NN ( g ` n ) oR <_ F ) |
| 73 |
10
|
adantr |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> ( S.2 ` F ) e. RR* ) |
| 74 |
|
ffvelcdm |
|- ( ( g : NN --> dom S.1 /\ n e. NN ) -> ( g ` n ) e. dom S.1 ) |
| 75 |
|
itg1cl |
|- ( ( g ` n ) e. dom S.1 -> ( S.1 ` ( g ` n ) ) e. RR ) |
| 76 |
74 75
|
syl |
|- ( ( g : NN --> dom S.1 /\ n e. NN ) -> ( S.1 ` ( g ` n ) ) e. RR ) |
| 77 |
76
|
fmpttd |
|- ( g : NN --> dom S.1 -> ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) : NN --> RR ) |
| 78 |
77
|
ad2antrl |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) : NN --> RR ) |
| 79 |
78
|
frnd |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) C_ RR ) |
| 80 |
|
ressxr |
|- RR C_ RR* |
| 81 |
79 80
|
sstrdi |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) C_ RR* ) |
| 82 |
|
supxrcl |
|- ( ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) C_ RR* -> sup ( ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) , RR* , < ) e. RR* ) |
| 83 |
81 82
|
syl |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> sup ( ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) , RR* , < ) e. RR* ) |
| 84 |
38
|
adantlr |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR* ) |
| 85 |
76
|
adantll |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> ( S.1 ` ( g ` n ) ) e. RR ) |
| 86 |
85
|
rexrd |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> ( S.1 ` ( g ` n ) ) e. RR* ) |
| 87 |
|
xrltle |
|- ( ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR* /\ ( S.1 ` ( g ` n ) ) e. RR* ) -> ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ ( S.1 ` ( g ` n ) ) ) ) |
| 88 |
84 86 87
|
syl2anc |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ ( S.1 ` ( g ` n ) ) ) ) |
| 89 |
|
2fveq3 |
|- ( n = m -> ( S.1 ` ( g ` n ) ) = ( S.1 ` ( g ` m ) ) ) |
| 90 |
89
|
cbvmptv |
|- ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) = ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) |
| 91 |
90
|
rneqi |
|- ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) = ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) |
| 92 |
77
|
adantl |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) -> ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) : NN --> RR ) |
| 93 |
92
|
frnd |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) -> ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) C_ RR ) |
| 94 |
93 80
|
sstrdi |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) -> ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) C_ RR* ) |
| 95 |
94
|
adantr |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) C_ RR* ) |
| 96 |
91 95
|
eqsstrrid |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) C_ RR* ) |
| 97 |
|
2fveq3 |
|- ( m = n -> ( S.1 ` ( g ` m ) ) = ( S.1 ` ( g ` n ) ) ) |
| 98 |
|
eqid |
|- ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) = ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) |
| 99 |
|
fvex |
|- ( S.1 ` ( g ` n ) ) e. _V |
| 100 |
97 98 99
|
fvmpt |
|- ( n e. NN -> ( ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) ` n ) = ( S.1 ` ( g ` n ) ) ) |
| 101 |
|
fvex |
|- ( S.1 ` ( g ` m ) ) e. _V |
| 102 |
101 98
|
fnmpti |
|- ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) Fn NN |
| 103 |
|
fnfvelrn |
|- ( ( ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) Fn NN /\ n e. NN ) -> ( ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) ` n ) e. ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) ) |
| 104 |
102 103
|
mpan |
|- ( n e. NN -> ( ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) ` n ) e. ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) ) |
| 105 |
100 104
|
eqeltrrd |
|- ( n e. NN -> ( S.1 ` ( g ` n ) ) e. ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) ) |
| 106 |
105
|
adantl |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> ( S.1 ` ( g ` n ) ) e. ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) ) |
| 107 |
|
supxrub |
|- ( ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) C_ RR* /\ ( S.1 ` ( g ` n ) ) e. ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) ) -> ( S.1 ` ( g ` n ) ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) |
| 108 |
96 106 107
|
syl2anc |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> ( S.1 ` ( g ` n ) ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) |
| 109 |
91
|
supeq1i |
|- sup ( ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) , RR* , < ) = sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) |
| 110 |
95 82
|
syl |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> sup ( ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) , RR* , < ) e. RR* ) |
| 111 |
109 110
|
eqeltrrid |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) e. RR* ) |
| 112 |
|
xrletr |
|- ( ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR* /\ ( S.1 ` ( g ` n ) ) e. RR* /\ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) e. RR* ) -> ( ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ ( S.1 ` ( g ` n ) ) /\ ( S.1 ` ( g ` n ) ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) ) |
| 113 |
84 86 111 112
|
syl3anc |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> ( ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ ( S.1 ` ( g ` n ) ) /\ ( S.1 ` ( g ` n ) ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) ) |
| 114 |
108 113
|
mpan2d |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ ( S.1 ` ( g ` n ) ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) ) |
| 115 |
88 114
|
syld |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) ) |
| 116 |
115
|
adantld |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> ( ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) ) |
| 117 |
116
|
ralimdva |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) -> ( A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) -> A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) ) |
| 118 |
117
|
impr |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) |
| 119 |
|
breq2 |
|- ( x = sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) -> ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x <-> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) ) |
| 120 |
119
|
ralbidv |
|- ( x = sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) -> ( A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x <-> A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) ) |
| 121 |
|
breq2 |
|- ( x = sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) -> ( ( S.2 ` F ) <_ x <-> ( S.2 ` F ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) ) |
| 122 |
120 121
|
imbi12d |
|- ( x = sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) -> ( ( A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x -> ( S.2 ` F ) <_ x ) <-> ( A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) -> ( S.2 ` F ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) ) ) |
| 123 |
|
elxr |
|- ( x e. RR* <-> ( x e. RR \/ x = +oo \/ x = -oo ) ) |
| 124 |
|
simplrl |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ ( S.2 ` F ) = +oo ) -> x e. RR ) |
| 125 |
|
arch |
|- ( x e. RR -> E. n e. NN x < n ) |
| 126 |
124 125
|
syl |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ ( S.2 ` F ) = +oo ) -> E. n e. NN x < n ) |
| 127 |
4
|
adantl |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ ( S.2 ` F ) = +oo ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) = n ) |
| 128 |
127
|
breq2d |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ ( S.2 ` F ) = +oo ) -> ( x < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <-> x < n ) ) |
| 129 |
128
|
rexbidv |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ ( S.2 ` F ) = +oo ) -> ( E. n e. NN x < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <-> E. n e. NN x < n ) ) |
| 130 |
126 129
|
mpbird |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ ( S.2 ` F ) = +oo ) -> E. n e. NN x < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) |
| 131 |
26
|
adantlr |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) -> ( S.2 ` F ) e. RR ) |
| 132 |
|
simplrl |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) -> x e. RR ) |
| 133 |
131 132
|
resubcld |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) -> ( ( S.2 ` F ) - x ) e. RR ) |
| 134 |
|
simplrr |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) -> x < ( S.2 ` F ) ) |
| 135 |
132 131
|
posdifd |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) -> ( x < ( S.2 ` F ) <-> 0 < ( ( S.2 ` F ) - x ) ) ) |
| 136 |
134 135
|
mpbid |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) -> 0 < ( ( S.2 ` F ) - x ) ) |
| 137 |
|
nnrecl |
|- ( ( ( ( S.2 ` F ) - x ) e. RR /\ 0 < ( ( S.2 ` F ) - x ) ) -> E. n e. NN ( 1 / n ) < ( ( S.2 ` F ) - x ) ) |
| 138 |
133 136 137
|
syl2anc |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) -> E. n e. NN ( 1 / n ) < ( ( S.2 ` F ) - x ) ) |
| 139 |
34
|
adantl |
|- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) /\ n e. NN ) -> ( 1 / n ) e. RR ) |
| 140 |
131
|
adantr |
|- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) /\ n e. NN ) -> ( S.2 ` F ) e. RR ) |
| 141 |
132
|
adantr |
|- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) /\ n e. NN ) -> x e. RR ) |
| 142 |
|
ltsub13 |
|- ( ( ( 1 / n ) e. RR /\ ( S.2 ` F ) e. RR /\ x e. RR ) -> ( ( 1 / n ) < ( ( S.2 ` F ) - x ) <-> x < ( ( S.2 ` F ) - ( 1 / n ) ) ) ) |
| 143 |
139 140 141 142
|
syl3anc |
|- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) /\ n e. NN ) -> ( ( 1 / n ) < ( ( S.2 ` F ) - x ) <-> x < ( ( S.2 ` F ) - ( 1 / n ) ) ) ) |
| 144 |
8
|
ad2antlr |
|- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) /\ n e. NN ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) = ( ( S.2 ` F ) - ( 1 / n ) ) ) |
| 145 |
144
|
breq2d |
|- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) /\ n e. NN ) -> ( x < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <-> x < ( ( S.2 ` F ) - ( 1 / n ) ) ) ) |
| 146 |
143 145
|
bitr4d |
|- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) /\ n e. NN ) -> ( ( 1 / n ) < ( ( S.2 ` F ) - x ) <-> x < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) ) |
| 147 |
146
|
rexbidva |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) -> ( E. n e. NN ( 1 / n ) < ( ( S.2 ` F ) - x ) <-> E. n e. NN x < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) ) |
| 148 |
138 147
|
mpbid |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) /\ -. ( S.2 ` F ) = +oo ) -> E. n e. NN x < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) |
| 149 |
130 148
|
pm2.61dan |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR /\ x < ( S.2 ` F ) ) ) -> E. n e. NN x < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) |
| 150 |
149
|
expr |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ x e. RR ) -> ( x < ( S.2 ` F ) -> E. n e. NN x < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) ) |
| 151 |
|
rexr |
|- ( x e. RR -> x e. RR* ) |
| 152 |
|
xrltnle |
|- ( ( x e. RR* /\ ( S.2 ` F ) e. RR* ) -> ( x < ( S.2 ` F ) <-> -. ( S.2 ` F ) <_ x ) ) |
| 153 |
151 10 152
|
syl2anr |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ x e. RR ) -> ( x < ( S.2 ` F ) <-> -. ( S.2 ` F ) <_ x ) ) |
| 154 |
151
|
ad2antlr |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ x e. RR ) /\ n e. NN ) -> x e. RR* ) |
| 155 |
38
|
adantlr |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ x e. RR ) /\ n e. NN ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR* ) |
| 156 |
|
xrltnle |
|- ( ( x e. RR* /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR* ) -> ( x < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <-> -. if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x ) ) |
| 157 |
154 155 156
|
syl2anc |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ x e. RR ) /\ n e. NN ) -> ( x < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <-> -. if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x ) ) |
| 158 |
157
|
rexbidva |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ x e. RR ) -> ( E. n e. NN x < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <-> E. n e. NN -. if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x ) ) |
| 159 |
|
rexnal |
|- ( E. n e. NN -. if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x <-> -. A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x ) |
| 160 |
158 159
|
bitrdi |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ x e. RR ) -> ( E. n e. NN x < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <-> -. A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x ) ) |
| 161 |
150 153 160
|
3imtr3d |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ x e. RR ) -> ( -. ( S.2 ` F ) <_ x -> -. A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x ) ) |
| 162 |
161
|
con4d |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ x e. RR ) -> ( A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x -> ( S.2 ` F ) <_ x ) ) |
| 163 |
10
|
adantr |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ x = +oo ) -> ( S.2 ` F ) e. RR* ) |
| 164 |
|
pnfge |
|- ( ( S.2 ` F ) e. RR* -> ( S.2 ` F ) <_ +oo ) |
| 165 |
163 164
|
syl |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ x = +oo ) -> ( S.2 ` F ) <_ +oo ) |
| 166 |
|
simpr |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ x = +oo ) -> x = +oo ) |
| 167 |
165 166
|
breqtrrd |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ x = +oo ) -> ( S.2 ` F ) <_ x ) |
| 168 |
167
|
a1d |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ x = +oo ) -> ( A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x -> ( S.2 ` F ) <_ x ) ) |
| 169 |
|
1nn |
|- 1 e. NN |
| 170 |
169
|
ne0ii |
|- NN =/= (/) |
| 171 |
|
r19.2z |
|- ( ( NN =/= (/) /\ A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x ) -> E. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x ) |
| 172 |
170 171
|
mpan |
|- ( A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x -> E. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x ) |
| 173 |
37
|
adantlr |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ x = -oo ) /\ n e. NN ) -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR ) |
| 174 |
|
mnflt |
|- ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR -> -oo < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) ) |
| 175 |
|
rexr |
|- ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR -> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR* ) |
| 176 |
|
xrltnle |
|- ( ( -oo e. RR* /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR* ) -> ( -oo < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <-> -. if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ -oo ) ) |
| 177 |
15 175 176
|
sylancr |
|- ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR -> ( -oo < if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <-> -. if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ -oo ) ) |
| 178 |
174 177
|
mpbid |
|- ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) e. RR -> -. if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ -oo ) |
| 179 |
173 178
|
syl |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ x = -oo ) /\ n e. NN ) -> -. if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ -oo ) |
| 180 |
|
simplr |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ x = -oo ) /\ n e. NN ) -> x = -oo ) |
| 181 |
180
|
breq2d |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ x = -oo ) /\ n e. NN ) -> ( if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x <-> if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ -oo ) ) |
| 182 |
179 181
|
mtbird |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ x = -oo ) /\ n e. NN ) -> -. if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x ) |
| 183 |
182
|
nrexdv |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ x = -oo ) -> -. E. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x ) |
| 184 |
183
|
pm2.21d |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ x = -oo ) -> ( E. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x -> ( S.2 ` F ) <_ x ) ) |
| 185 |
172 184
|
syl5 |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ x = -oo ) -> ( A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x -> ( S.2 ` F ) <_ x ) ) |
| 186 |
162 168 185
|
3jaodan |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( x e. RR \/ x = +oo \/ x = -oo ) ) -> ( A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x -> ( S.2 ` F ) <_ x ) ) |
| 187 |
123 186
|
sylan2b |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ x e. RR* ) -> ( A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x -> ( S.2 ` F ) <_ x ) ) |
| 188 |
187
|
ralrimiva |
|- ( F : RR --> ( 0 [,] +oo ) -> A. x e. RR* ( A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x -> ( S.2 ` F ) <_ x ) ) |
| 189 |
188
|
adantr |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> A. x e. RR* ( A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ x -> ( S.2 ` F ) <_ x ) ) |
| 190 |
109 83
|
eqeltrrid |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) e. RR* ) |
| 191 |
122 189 190
|
rspcdva |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> ( A. n e. NN if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) -> ( S.2 ` F ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) ) |
| 192 |
118 191
|
mpd |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> ( S.2 ` F ) <_ sup ( ran ( m e. NN |-> ( S.1 ` ( g ` m ) ) ) , RR* , < ) ) |
| 193 |
192 109
|
breqtrrdi |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> ( S.2 ` F ) <_ sup ( ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) , RR* , < ) ) |
| 194 |
|
itg2ub |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g ` n ) e. dom S.1 /\ ( g ` n ) oR <_ F ) -> ( S.1 ` ( g ` n ) ) <_ ( S.2 ` F ) ) |
| 195 |
194
|
3expia |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g ` n ) e. dom S.1 ) -> ( ( g ` n ) oR <_ F -> ( S.1 ` ( g ` n ) ) <_ ( S.2 ` F ) ) ) |
| 196 |
74 195
|
sylan2 |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ n e. NN ) ) -> ( ( g ` n ) oR <_ F -> ( S.1 ` ( g ` n ) ) <_ ( S.2 ` F ) ) ) |
| 197 |
196
|
anassrs |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> ( ( g ` n ) oR <_ F -> ( S.1 ` ( g ` n ) ) <_ ( S.2 ` F ) ) ) |
| 198 |
197
|
adantrd |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) /\ n e. NN ) -> ( ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) -> ( S.1 ` ( g ` n ) ) <_ ( S.2 ` F ) ) ) |
| 199 |
198
|
ralimdva |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ g : NN --> dom S.1 ) -> ( A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) -> A. n e. NN ( S.1 ` ( g ` n ) ) <_ ( S.2 ` F ) ) ) |
| 200 |
199
|
impr |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> A. n e. NN ( S.1 ` ( g ` n ) ) <_ ( S.2 ` F ) ) |
| 201 |
|
eqid |
|- ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) = ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) |
| 202 |
89 201 101
|
fvmpt |
|- ( m e. NN -> ( ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) ` m ) = ( S.1 ` ( g ` m ) ) ) |
| 203 |
202
|
breq1d |
|- ( m e. NN -> ( ( ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) ` m ) <_ ( S.2 ` F ) <-> ( S.1 ` ( g ` m ) ) <_ ( S.2 ` F ) ) ) |
| 204 |
203
|
ralbiia |
|- ( A. m e. NN ( ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) ` m ) <_ ( S.2 ` F ) <-> A. m e. NN ( S.1 ` ( g ` m ) ) <_ ( S.2 ` F ) ) |
| 205 |
89
|
breq1d |
|- ( n = m -> ( ( S.1 ` ( g ` n ) ) <_ ( S.2 ` F ) <-> ( S.1 ` ( g ` m ) ) <_ ( S.2 ` F ) ) ) |
| 206 |
205
|
cbvralvw |
|- ( A. n e. NN ( S.1 ` ( g ` n ) ) <_ ( S.2 ` F ) <-> A. m e. NN ( S.1 ` ( g ` m ) ) <_ ( S.2 ` F ) ) |
| 207 |
204 206
|
bitr4i |
|- ( A. m e. NN ( ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) ` m ) <_ ( S.2 ` F ) <-> A. n e. NN ( S.1 ` ( g ` n ) ) <_ ( S.2 ` F ) ) |
| 208 |
200 207
|
sylibr |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> A. m e. NN ( ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) ` m ) <_ ( S.2 ` F ) ) |
| 209 |
|
ffn |
|- ( ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) : NN --> RR -> ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) Fn NN ) |
| 210 |
|
breq1 |
|- ( z = ( ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) ` m ) -> ( z <_ ( S.2 ` F ) <-> ( ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) ` m ) <_ ( S.2 ` F ) ) ) |
| 211 |
210
|
ralrn |
|- ( ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) Fn NN -> ( A. z e. ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) z <_ ( S.2 ` F ) <-> A. m e. NN ( ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) ` m ) <_ ( S.2 ` F ) ) ) |
| 212 |
78 209 211
|
3syl |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> ( A. z e. ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) z <_ ( S.2 ` F ) <-> A. m e. NN ( ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) ` m ) <_ ( S.2 ` F ) ) ) |
| 213 |
208 212
|
mpbird |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> A. z e. ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) z <_ ( S.2 ` F ) ) |
| 214 |
|
supxrleub |
|- ( ( ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) C_ RR* /\ ( S.2 ` F ) e. RR* ) -> ( sup ( ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) , RR* , < ) <_ ( S.2 ` F ) <-> A. z e. ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) z <_ ( S.2 ` F ) ) ) |
| 215 |
81 73 214
|
syl2anc |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> ( sup ( ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) , RR* , < ) <_ ( S.2 ` F ) <-> A. z e. ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) z <_ ( S.2 ` F ) ) ) |
| 216 |
213 215
|
mpbird |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> sup ( ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) , RR* , < ) <_ ( S.2 ` F ) ) |
| 217 |
73 83 193 216
|
xrletrid |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> ( S.2 ` F ) = sup ( ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) , RR* , < ) ) |
| 218 |
69 72 217
|
3jca |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) ) -> ( g : NN --> dom S.1 /\ A. n e. NN ( g ` n ) oR <_ F /\ ( S.2 ` F ) = sup ( ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) , RR* , < ) ) ) |
| 219 |
218
|
ex |
|- ( F : RR --> ( 0 [,] +oo ) -> ( ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) -> ( g : NN --> dom S.1 /\ A. n e. NN ( g ` n ) oR <_ F /\ ( S.2 ` F ) = sup ( ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) , RR* , < ) ) ) ) |
| 220 |
219
|
eximdv |
|- ( F : RR --> ( 0 [,] +oo ) -> ( E. g ( g : NN --> dom S.1 /\ A. n e. NN ( ( g ` n ) oR <_ F /\ if ( ( S.2 ` F ) = +oo , n , ( ( S.2 ` F ) - ( 1 / n ) ) ) < ( S.1 ` ( g ` n ) ) ) ) -> E. g ( g : NN --> dom S.1 /\ A. n e. NN ( g ` n ) oR <_ F /\ ( S.2 ` F ) = sup ( ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) , RR* , < ) ) ) ) |
| 221 |
68 220
|
mpd |
|- ( F : RR --> ( 0 [,] +oo ) -> E. g ( g : NN --> dom S.1 /\ A. n e. NN ( g ` n ) oR <_ F /\ ( S.2 ` F ) = sup ( ran ( n e. NN |-> ( S.1 ` ( g ` n ) ) ) , RR* , < ) ) ) |