Step |
Hyp |
Ref |
Expression |
1 |
|
itg2val.1 |
|- L = { x | E. g e. dom S.1 ( g oR <_ F /\ x = ( S.1 ` g ) ) } |
2 |
|
xrltso |
|- < Or RR* |
3 |
2
|
supex |
|- sup ( L , RR* , < ) e. _V |
4 |
|
reex |
|- RR e. _V |
5 |
|
ovex |
|- ( 0 [,] +oo ) e. _V |
6 |
|
breq2 |
|- ( f = F -> ( g oR <_ f <-> g oR <_ F ) ) |
7 |
6
|
anbi1d |
|- ( f = F -> ( ( g oR <_ f /\ x = ( S.1 ` g ) ) <-> ( g oR <_ F /\ x = ( S.1 ` g ) ) ) ) |
8 |
7
|
rexbidv |
|- ( f = F -> ( E. g e. dom S.1 ( g oR <_ f /\ x = ( S.1 ` g ) ) <-> E. g e. dom S.1 ( g oR <_ F /\ x = ( S.1 ` g ) ) ) ) |
9 |
8
|
abbidv |
|- ( f = F -> { x | E. g e. dom S.1 ( g oR <_ f /\ x = ( S.1 ` g ) ) } = { x | E. g e. dom S.1 ( g oR <_ F /\ x = ( S.1 ` g ) ) } ) |
10 |
9 1
|
eqtr4di |
|- ( f = F -> { x | E. g e. dom S.1 ( g oR <_ f /\ x = ( S.1 ` g ) ) } = L ) |
11 |
10
|
supeq1d |
|- ( f = F -> sup ( { x | E. g e. dom S.1 ( g oR <_ f /\ x = ( S.1 ` g ) ) } , RR* , < ) = sup ( L , RR* , < ) ) |
12 |
|
df-itg2 |
|- S.2 = ( f e. ( ( 0 [,] +oo ) ^m RR ) |-> sup ( { x | E. g e. dom S.1 ( g oR <_ f /\ x = ( S.1 ` g ) ) } , RR* , < ) ) |
13 |
3 4 5 11 12
|
fvmptmap |
|- ( F : RR --> ( 0 [,] +oo ) -> ( S.2 ` F ) = sup ( L , RR* , < ) ) |