| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itgcnlem.r |  |-  R = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) ) | 
						
							| 2 |  | itgcnlem.s |  |-  S = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) ) ) | 
						
							| 3 |  | itgcnlem.t |  |-  T = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) ) ) | 
						
							| 4 |  | itgcnlem.u |  |-  U = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) ) ) | 
						
							| 5 |  | itgcnlem.v |  |-  ( ( ph /\ x e. A ) -> B e. V ) | 
						
							| 6 |  | itgcnlem.i |  |-  ( ph -> ( x e. A |-> B ) e. L^1 ) | 
						
							| 7 |  | eqid |  |-  ( Re ` ( B / ( _i ^ k ) ) ) = ( Re ` ( B / ( _i ^ k ) ) ) | 
						
							| 8 | 7 | dfitg |  |-  S. A B _d x = sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) | 
						
							| 9 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 10 |  | df-3 |  |-  3 = ( 2 + 1 ) | 
						
							| 11 |  | oveq2 |  |-  ( k = 3 -> ( _i ^ k ) = ( _i ^ 3 ) ) | 
						
							| 12 |  | i3 |  |-  ( _i ^ 3 ) = -u _i | 
						
							| 13 | 11 12 | eqtrdi |  |-  ( k = 3 -> ( _i ^ k ) = -u _i ) | 
						
							| 14 | 12 | itgvallem |  |-  ( k = 3 -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u _i ) ) ) , ( Re ` ( B / -u _i ) ) , 0 ) ) ) ) | 
						
							| 15 | 13 14 | oveq12d |  |-  ( k = 3 -> ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) = ( -u _i x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u _i ) ) ) , ( Re ` ( B / -u _i ) ) , 0 ) ) ) ) ) | 
						
							| 16 |  | ax-icn |  |-  _i e. CC | 
						
							| 17 | 16 | a1i |  |-  ( ph -> _i e. CC ) | 
						
							| 18 |  | expcl |  |-  ( ( _i e. CC /\ k e. NN0 ) -> ( _i ^ k ) e. CC ) | 
						
							| 19 | 17 18 | sylan |  |-  ( ( ph /\ k e. NN0 ) -> ( _i ^ k ) e. CC ) | 
						
							| 20 |  | nn0z |  |-  ( k e. NN0 -> k e. ZZ ) | 
						
							| 21 |  | eqidd |  |-  ( ph -> ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) = ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) | 
						
							| 22 |  | eqidd |  |-  ( ( ph /\ x e. A ) -> ( Re ` ( B / ( _i ^ k ) ) ) = ( Re ` ( B / ( _i ^ k ) ) ) ) | 
						
							| 23 | 21 22 6 5 | iblitg |  |-  ( ( ph /\ k e. ZZ ) -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) e. RR ) | 
						
							| 24 | 23 | recnd |  |-  ( ( ph /\ k e. ZZ ) -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) e. CC ) | 
						
							| 25 | 20 24 | sylan2 |  |-  ( ( ph /\ k e. NN0 ) -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) e. CC ) | 
						
							| 26 | 19 25 | mulcld |  |-  ( ( ph /\ k e. NN0 ) -> ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) e. CC ) | 
						
							| 27 |  | df-2 |  |-  2 = ( 1 + 1 ) | 
						
							| 28 |  | oveq2 |  |-  ( k = 2 -> ( _i ^ k ) = ( _i ^ 2 ) ) | 
						
							| 29 |  | i2 |  |-  ( _i ^ 2 ) = -u 1 | 
						
							| 30 | 28 29 | eqtrdi |  |-  ( k = 2 -> ( _i ^ k ) = -u 1 ) | 
						
							| 31 | 29 | itgvallem |  |-  ( k = 2 -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u 1 ) ) ) , ( Re ` ( B / -u 1 ) ) , 0 ) ) ) ) | 
						
							| 32 | 30 31 | oveq12d |  |-  ( k = 2 -> ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) = ( -u 1 x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u 1 ) ) ) , ( Re ` ( B / -u 1 ) ) , 0 ) ) ) ) ) | 
						
							| 33 |  | 1e0p1 |  |-  1 = ( 0 + 1 ) | 
						
							| 34 |  | oveq2 |  |-  ( k = 1 -> ( _i ^ k ) = ( _i ^ 1 ) ) | 
						
							| 35 |  | exp1 |  |-  ( _i e. CC -> ( _i ^ 1 ) = _i ) | 
						
							| 36 | 16 35 | ax-mp |  |-  ( _i ^ 1 ) = _i | 
						
							| 37 | 34 36 | eqtrdi |  |-  ( k = 1 -> ( _i ^ k ) = _i ) | 
						
							| 38 | 36 | itgvallem |  |-  ( k = 1 -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / _i ) ) ) , ( Re ` ( B / _i ) ) , 0 ) ) ) ) | 
						
							| 39 | 37 38 | oveq12d |  |-  ( k = 1 -> ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) = ( _i x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / _i ) ) ) , ( Re ` ( B / _i ) ) , 0 ) ) ) ) ) | 
						
							| 40 |  | 0z |  |-  0 e. ZZ | 
						
							| 41 |  | iblmbf |  |-  ( ( x e. A |-> B ) e. L^1 -> ( x e. A |-> B ) e. MblFn ) | 
						
							| 42 | 6 41 | syl |  |-  ( ph -> ( x e. A |-> B ) e. MblFn ) | 
						
							| 43 | 42 5 | mbfmptcl |  |-  ( ( ph /\ x e. A ) -> B e. CC ) | 
						
							| 44 | 43 | div1d |  |-  ( ( ph /\ x e. A ) -> ( B / 1 ) = B ) | 
						
							| 45 | 44 | fveq2d |  |-  ( ( ph /\ x e. A ) -> ( Re ` ( B / 1 ) ) = ( Re ` B ) ) | 
						
							| 46 | 45 | ibllem |  |-  ( ph -> if ( ( x e. A /\ 0 <_ ( Re ` ( B / 1 ) ) ) , ( Re ` ( B / 1 ) ) , 0 ) = if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) | 
						
							| 47 | 46 | mpteq2dv |  |-  ( ph -> ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / 1 ) ) ) , ( Re ` ( B / 1 ) ) , 0 ) ) = ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) ) | 
						
							| 48 | 47 | fveq2d |  |-  ( ph -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / 1 ) ) ) , ( Re ` ( B / 1 ) ) , 0 ) ) ) = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` B ) ) , ( Re ` B ) , 0 ) ) ) ) | 
						
							| 49 | 1 48 | eqtr4id |  |-  ( ph -> R = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / 1 ) ) ) , ( Re ` ( B / 1 ) ) , 0 ) ) ) ) | 
						
							| 50 | 49 | oveq2d |  |-  ( ph -> ( 1 x. R ) = ( 1 x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / 1 ) ) ) , ( Re ` ( B / 1 ) ) , 0 ) ) ) ) ) | 
						
							| 51 | 1 2 3 4 5 | iblcnlem |  |-  ( ph -> ( ( x e. A |-> B ) e. L^1 <-> ( ( x e. A |-> B ) e. MblFn /\ ( R e. RR /\ S e. RR ) /\ ( T e. RR /\ U e. RR ) ) ) ) | 
						
							| 52 | 6 51 | mpbid |  |-  ( ph -> ( ( x e. A |-> B ) e. MblFn /\ ( R e. RR /\ S e. RR ) /\ ( T e. RR /\ U e. RR ) ) ) | 
						
							| 53 | 52 | simp2d |  |-  ( ph -> ( R e. RR /\ S e. RR ) ) | 
						
							| 54 | 53 | simpld |  |-  ( ph -> R e. RR ) | 
						
							| 55 | 54 | recnd |  |-  ( ph -> R e. CC ) | 
						
							| 56 | 55 | mullidd |  |-  ( ph -> ( 1 x. R ) = R ) | 
						
							| 57 | 50 56 | eqtr3d |  |-  ( ph -> ( 1 x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / 1 ) ) ) , ( Re ` ( B / 1 ) ) , 0 ) ) ) ) = R ) | 
						
							| 58 | 57 55 | eqeltrd |  |-  ( ph -> ( 1 x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / 1 ) ) ) , ( Re ` ( B / 1 ) ) , 0 ) ) ) ) e. CC ) | 
						
							| 59 |  | oveq2 |  |-  ( k = 0 -> ( _i ^ k ) = ( _i ^ 0 ) ) | 
						
							| 60 |  | exp0 |  |-  ( _i e. CC -> ( _i ^ 0 ) = 1 ) | 
						
							| 61 | 16 60 | ax-mp |  |-  ( _i ^ 0 ) = 1 | 
						
							| 62 | 59 61 | eqtrdi |  |-  ( k = 0 -> ( _i ^ k ) = 1 ) | 
						
							| 63 | 61 | itgvallem |  |-  ( k = 0 -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / 1 ) ) ) , ( Re ` ( B / 1 ) ) , 0 ) ) ) ) | 
						
							| 64 | 62 63 | oveq12d |  |-  ( k = 0 -> ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) = ( 1 x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / 1 ) ) ) , ( Re ` ( B / 1 ) ) , 0 ) ) ) ) ) | 
						
							| 65 | 64 | fsum1 |  |-  ( ( 0 e. ZZ /\ ( 1 x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / 1 ) ) ) , ( Re ` ( B / 1 ) ) , 0 ) ) ) ) e. CC ) -> sum_ k e. ( 0 ... 0 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) = ( 1 x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / 1 ) ) ) , ( Re ` ( B / 1 ) ) , 0 ) ) ) ) ) | 
						
							| 66 | 40 58 65 | sylancr |  |-  ( ph -> sum_ k e. ( 0 ... 0 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) = ( 1 x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / 1 ) ) ) , ( Re ` ( B / 1 ) ) , 0 ) ) ) ) ) | 
						
							| 67 | 66 57 | eqtrd |  |-  ( ph -> sum_ k e. ( 0 ... 0 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) = R ) | 
						
							| 68 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 69 | 67 68 | jctil |  |-  ( ph -> ( 0 e. NN0 /\ sum_ k e. ( 0 ... 0 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) = R ) ) | 
						
							| 70 |  | imval |  |-  ( B e. CC -> ( Im ` B ) = ( Re ` ( B / _i ) ) ) | 
						
							| 71 | 43 70 | syl |  |-  ( ( ph /\ x e. A ) -> ( Im ` B ) = ( Re ` ( B / _i ) ) ) | 
						
							| 72 | 71 | ibllem |  |-  ( ph -> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) = if ( ( x e. A /\ 0 <_ ( Re ` ( B / _i ) ) ) , ( Re ` ( B / _i ) ) , 0 ) ) | 
						
							| 73 | 72 | mpteq2dv |  |-  ( ph -> ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) ) = ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / _i ) ) ) , ( Re ` ( B / _i ) ) , 0 ) ) ) | 
						
							| 74 | 73 | fveq2d |  |-  ( ph -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Im ` B ) ) , ( Im ` B ) , 0 ) ) ) = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / _i ) ) ) , ( Re ` ( B / _i ) ) , 0 ) ) ) ) | 
						
							| 75 | 3 74 | eqtr2id |  |-  ( ph -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / _i ) ) ) , ( Re ` ( B / _i ) ) , 0 ) ) ) = T ) | 
						
							| 76 | 75 | oveq2d |  |-  ( ph -> ( _i x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / _i ) ) ) , ( Re ` ( B / _i ) ) , 0 ) ) ) ) = ( _i x. T ) ) | 
						
							| 77 | 76 | oveq2d |  |-  ( ph -> ( R + ( _i x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / _i ) ) ) , ( Re ` ( B / _i ) ) , 0 ) ) ) ) ) = ( R + ( _i x. T ) ) ) | 
						
							| 78 | 9 33 39 26 69 77 | fsump1i |  |-  ( ph -> ( 1 e. NN0 /\ sum_ k e. ( 0 ... 1 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) = ( R + ( _i x. T ) ) ) ) | 
						
							| 79 | 43 | renegd |  |-  ( ( ph /\ x e. A ) -> ( Re ` -u B ) = -u ( Re ` B ) ) | 
						
							| 80 |  | ax-1cn |  |-  1 e. CC | 
						
							| 81 | 80 | negnegi |  |-  -u -u 1 = 1 | 
						
							| 82 | 81 | oveq2i |  |-  ( -u B / -u -u 1 ) = ( -u B / 1 ) | 
						
							| 83 | 43 | negcld |  |-  ( ( ph /\ x e. A ) -> -u B e. CC ) | 
						
							| 84 | 83 | div1d |  |-  ( ( ph /\ x e. A ) -> ( -u B / 1 ) = -u B ) | 
						
							| 85 | 82 84 | eqtrid |  |-  ( ( ph /\ x e. A ) -> ( -u B / -u -u 1 ) = -u B ) | 
						
							| 86 | 80 | negcli |  |-  -u 1 e. CC | 
						
							| 87 |  | neg1ne0 |  |-  -u 1 =/= 0 | 
						
							| 88 |  | div2neg |  |-  ( ( B e. CC /\ -u 1 e. CC /\ -u 1 =/= 0 ) -> ( -u B / -u -u 1 ) = ( B / -u 1 ) ) | 
						
							| 89 | 86 87 88 | mp3an23 |  |-  ( B e. CC -> ( -u B / -u -u 1 ) = ( B / -u 1 ) ) | 
						
							| 90 | 43 89 | syl |  |-  ( ( ph /\ x e. A ) -> ( -u B / -u -u 1 ) = ( B / -u 1 ) ) | 
						
							| 91 | 85 90 | eqtr3d |  |-  ( ( ph /\ x e. A ) -> -u B = ( B / -u 1 ) ) | 
						
							| 92 | 91 | fveq2d |  |-  ( ( ph /\ x e. A ) -> ( Re ` -u B ) = ( Re ` ( B / -u 1 ) ) ) | 
						
							| 93 | 79 92 | eqtr3d |  |-  ( ( ph /\ x e. A ) -> -u ( Re ` B ) = ( Re ` ( B / -u 1 ) ) ) | 
						
							| 94 | 93 | ibllem |  |-  ( ph -> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) = if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u 1 ) ) ) , ( Re ` ( B / -u 1 ) ) , 0 ) ) | 
						
							| 95 | 94 | mpteq2dv |  |-  ( ph -> ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) ) = ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u 1 ) ) ) , ( Re ` ( B / -u 1 ) ) , 0 ) ) ) | 
						
							| 96 | 95 | fveq2d |  |-  ( ph -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Re ` B ) ) , -u ( Re ` B ) , 0 ) ) ) = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u 1 ) ) ) , ( Re ` ( B / -u 1 ) ) , 0 ) ) ) ) | 
						
							| 97 | 2 96 | eqtrid |  |-  ( ph -> S = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u 1 ) ) ) , ( Re ` ( B / -u 1 ) ) , 0 ) ) ) ) | 
						
							| 98 | 97 | oveq2d |  |-  ( ph -> ( -u 1 x. S ) = ( -u 1 x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u 1 ) ) ) , ( Re ` ( B / -u 1 ) ) , 0 ) ) ) ) ) | 
						
							| 99 | 53 | simprd |  |-  ( ph -> S e. RR ) | 
						
							| 100 | 99 | recnd |  |-  ( ph -> S e. CC ) | 
						
							| 101 | 100 | mulm1d |  |-  ( ph -> ( -u 1 x. S ) = -u S ) | 
						
							| 102 | 98 101 | eqtr3d |  |-  ( ph -> ( -u 1 x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u 1 ) ) ) , ( Re ` ( B / -u 1 ) ) , 0 ) ) ) ) = -u S ) | 
						
							| 103 | 102 | oveq2d |  |-  ( ph -> ( ( R + ( _i x. T ) ) + ( -u 1 x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u 1 ) ) ) , ( Re ` ( B / -u 1 ) ) , 0 ) ) ) ) ) = ( ( R + ( _i x. T ) ) + -u S ) ) | 
						
							| 104 | 52 | simp3d |  |-  ( ph -> ( T e. RR /\ U e. RR ) ) | 
						
							| 105 | 104 | simpld |  |-  ( ph -> T e. RR ) | 
						
							| 106 | 105 | recnd |  |-  ( ph -> T e. CC ) | 
						
							| 107 |  | mulcl |  |-  ( ( _i e. CC /\ T e. CC ) -> ( _i x. T ) e. CC ) | 
						
							| 108 | 16 106 107 | sylancr |  |-  ( ph -> ( _i x. T ) e. CC ) | 
						
							| 109 | 55 108 | addcld |  |-  ( ph -> ( R + ( _i x. T ) ) e. CC ) | 
						
							| 110 | 109 100 | negsubd |  |-  ( ph -> ( ( R + ( _i x. T ) ) + -u S ) = ( ( R + ( _i x. T ) ) - S ) ) | 
						
							| 111 | 55 108 100 | addsubd |  |-  ( ph -> ( ( R + ( _i x. T ) ) - S ) = ( ( R - S ) + ( _i x. T ) ) ) | 
						
							| 112 | 103 110 111 | 3eqtrd |  |-  ( ph -> ( ( R + ( _i x. T ) ) + ( -u 1 x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u 1 ) ) ) , ( Re ` ( B / -u 1 ) ) , 0 ) ) ) ) ) = ( ( R - S ) + ( _i x. T ) ) ) | 
						
							| 113 | 9 27 32 26 78 112 | fsump1i |  |-  ( ph -> ( 2 e. NN0 /\ sum_ k e. ( 0 ... 2 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) = ( ( R - S ) + ( _i x. T ) ) ) ) | 
						
							| 114 |  | imval |  |-  ( -u B e. CC -> ( Im ` -u B ) = ( Re ` ( -u B / _i ) ) ) | 
						
							| 115 | 83 114 | syl |  |-  ( ( ph /\ x e. A ) -> ( Im ` -u B ) = ( Re ` ( -u B / _i ) ) ) | 
						
							| 116 | 43 | imnegd |  |-  ( ( ph /\ x e. A ) -> ( Im ` -u B ) = -u ( Im ` B ) ) | 
						
							| 117 | 16 | negnegi |  |-  -u -u _i = _i | 
						
							| 118 | 117 | eqcomi |  |-  _i = -u -u _i | 
						
							| 119 | 118 | oveq2i |  |-  ( -u B / _i ) = ( -u B / -u -u _i ) | 
						
							| 120 | 16 | negcli |  |-  -u _i e. CC | 
						
							| 121 |  | ine0 |  |-  _i =/= 0 | 
						
							| 122 | 16 121 | negne0i |  |-  -u _i =/= 0 | 
						
							| 123 |  | div2neg |  |-  ( ( B e. CC /\ -u _i e. CC /\ -u _i =/= 0 ) -> ( -u B / -u -u _i ) = ( B / -u _i ) ) | 
						
							| 124 | 120 122 123 | mp3an23 |  |-  ( B e. CC -> ( -u B / -u -u _i ) = ( B / -u _i ) ) | 
						
							| 125 | 43 124 | syl |  |-  ( ( ph /\ x e. A ) -> ( -u B / -u -u _i ) = ( B / -u _i ) ) | 
						
							| 126 | 119 125 | eqtrid |  |-  ( ( ph /\ x e. A ) -> ( -u B / _i ) = ( B / -u _i ) ) | 
						
							| 127 | 126 | fveq2d |  |-  ( ( ph /\ x e. A ) -> ( Re ` ( -u B / _i ) ) = ( Re ` ( B / -u _i ) ) ) | 
						
							| 128 | 115 116 127 | 3eqtr3d |  |-  ( ( ph /\ x e. A ) -> -u ( Im ` B ) = ( Re ` ( B / -u _i ) ) ) | 
						
							| 129 | 128 | ibllem |  |-  ( ph -> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) = if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u _i ) ) ) , ( Re ` ( B / -u _i ) ) , 0 ) ) | 
						
							| 130 | 129 | mpteq2dv |  |-  ( ph -> ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) ) = ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u _i ) ) ) , ( Re ` ( B / -u _i ) ) , 0 ) ) ) | 
						
							| 131 | 130 | fveq2d |  |-  ( ph -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ -u ( Im ` B ) ) , -u ( Im ` B ) , 0 ) ) ) = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u _i ) ) ) , ( Re ` ( B / -u _i ) ) , 0 ) ) ) ) | 
						
							| 132 | 4 131 | eqtrid |  |-  ( ph -> U = ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u _i ) ) ) , ( Re ` ( B / -u _i ) ) , 0 ) ) ) ) | 
						
							| 133 | 132 | oveq2d |  |-  ( ph -> ( -u _i x. U ) = ( -u _i x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u _i ) ) ) , ( Re ` ( B / -u _i ) ) , 0 ) ) ) ) ) | 
						
							| 134 | 104 | simprd |  |-  ( ph -> U e. RR ) | 
						
							| 135 | 134 | recnd |  |-  ( ph -> U e. CC ) | 
						
							| 136 |  | mulneg12 |  |-  ( ( _i e. CC /\ U e. CC ) -> ( -u _i x. U ) = ( _i x. -u U ) ) | 
						
							| 137 | 16 135 136 | sylancr |  |-  ( ph -> ( -u _i x. U ) = ( _i x. -u U ) ) | 
						
							| 138 | 133 137 | eqtr3d |  |-  ( ph -> ( -u _i x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u _i ) ) ) , ( Re ` ( B / -u _i ) ) , 0 ) ) ) ) = ( _i x. -u U ) ) | 
						
							| 139 | 138 | oveq2d |  |-  ( ph -> ( ( ( R - S ) + ( _i x. T ) ) + ( -u _i x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / -u _i ) ) ) , ( Re ` ( B / -u _i ) ) , 0 ) ) ) ) ) = ( ( ( R - S ) + ( _i x. T ) ) + ( _i x. -u U ) ) ) | 
						
							| 140 | 9 10 15 26 113 139 | fsump1i |  |-  ( ph -> ( 3 e. NN0 /\ sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) = ( ( ( R - S ) + ( _i x. T ) ) + ( _i x. -u U ) ) ) ) | 
						
							| 141 | 140 | simprd |  |-  ( ph -> sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) = ( ( ( R - S ) + ( _i x. T ) ) + ( _i x. -u U ) ) ) | 
						
							| 142 | 8 141 | eqtrid |  |-  ( ph -> S. A B _d x = ( ( ( R - S ) + ( _i x. T ) ) + ( _i x. -u U ) ) ) | 
						
							| 143 | 55 100 | subcld |  |-  ( ph -> ( R - S ) e. CC ) | 
						
							| 144 | 135 | negcld |  |-  ( ph -> -u U e. CC ) | 
						
							| 145 |  | mulcl |  |-  ( ( _i e. CC /\ -u U e. CC ) -> ( _i x. -u U ) e. CC ) | 
						
							| 146 | 16 144 145 | sylancr |  |-  ( ph -> ( _i x. -u U ) e. CC ) | 
						
							| 147 | 143 108 146 | addassd |  |-  ( ph -> ( ( ( R - S ) + ( _i x. T ) ) + ( _i x. -u U ) ) = ( ( R - S ) + ( ( _i x. T ) + ( _i x. -u U ) ) ) ) | 
						
							| 148 | 17 106 144 | adddid |  |-  ( ph -> ( _i x. ( T + -u U ) ) = ( ( _i x. T ) + ( _i x. -u U ) ) ) | 
						
							| 149 | 106 135 | negsubd |  |-  ( ph -> ( T + -u U ) = ( T - U ) ) | 
						
							| 150 | 149 | oveq2d |  |-  ( ph -> ( _i x. ( T + -u U ) ) = ( _i x. ( T - U ) ) ) | 
						
							| 151 | 148 150 | eqtr3d |  |-  ( ph -> ( ( _i x. T ) + ( _i x. -u U ) ) = ( _i x. ( T - U ) ) ) | 
						
							| 152 | 151 | oveq2d |  |-  ( ph -> ( ( R - S ) + ( ( _i x. T ) + ( _i x. -u U ) ) ) = ( ( R - S ) + ( _i x. ( T - U ) ) ) ) | 
						
							| 153 | 142 147 152 | 3eqtrd |  |-  ( ph -> S. A B _d x = ( ( R - S ) + ( _i x. ( T - U ) ) ) ) |