Step |
Hyp |
Ref |
Expression |
1 |
|
itgcoscmulx.a |
|- ( ph -> A e. CC ) |
2 |
|
itgcoscmulx.b |
|- ( ph -> B e. RR ) |
3 |
|
itgcoscmulx.c |
|- ( ph -> C e. RR ) |
4 |
|
itgcoscmulx.blec |
|- ( ph -> B <_ C ) |
5 |
|
itgcoscmulx.an0 |
|- ( ph -> A =/= 0 ) |
6 |
2 3
|
iccssred |
|- ( ph -> ( B [,] C ) C_ RR ) |
7 |
6
|
resmptd |
|- ( ph -> ( ( y e. RR |-> ( ( sin ` ( A x. y ) ) / A ) ) |` ( B [,] C ) ) = ( y e. ( B [,] C ) |-> ( ( sin ` ( A x. y ) ) / A ) ) ) |
8 |
7
|
eqcomd |
|- ( ph -> ( y e. ( B [,] C ) |-> ( ( sin ` ( A x. y ) ) / A ) ) = ( ( y e. RR |-> ( ( sin ` ( A x. y ) ) / A ) ) |` ( B [,] C ) ) ) |
9 |
8
|
oveq2d |
|- ( ph -> ( RR _D ( y e. ( B [,] C ) |-> ( ( sin ` ( A x. y ) ) / A ) ) ) = ( RR _D ( ( y e. RR |-> ( ( sin ` ( A x. y ) ) / A ) ) |` ( B [,] C ) ) ) ) |
10 |
|
ax-resscn |
|- RR C_ CC |
11 |
10
|
a1i |
|- ( ph -> RR C_ CC ) |
12 |
11
|
sselda |
|- ( ( ph /\ y e. RR ) -> y e. CC ) |
13 |
1
|
adantr |
|- ( ( ph /\ y e. CC ) -> A e. CC ) |
14 |
|
simpr |
|- ( ( ph /\ y e. CC ) -> y e. CC ) |
15 |
13 14
|
mulcld |
|- ( ( ph /\ y e. CC ) -> ( A x. y ) e. CC ) |
16 |
15
|
sincld |
|- ( ( ph /\ y e. CC ) -> ( sin ` ( A x. y ) ) e. CC ) |
17 |
5
|
adantr |
|- ( ( ph /\ y e. CC ) -> A =/= 0 ) |
18 |
16 13 17
|
divcld |
|- ( ( ph /\ y e. CC ) -> ( ( sin ` ( A x. y ) ) / A ) e. CC ) |
19 |
12 18
|
syldan |
|- ( ( ph /\ y e. RR ) -> ( ( sin ` ( A x. y ) ) / A ) e. CC ) |
20 |
19
|
fmpttd |
|- ( ph -> ( y e. RR |-> ( ( sin ` ( A x. y ) ) / A ) ) : RR --> CC ) |
21 |
|
ssidd |
|- ( ph -> RR C_ RR ) |
22 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
23 |
|
tgioo4 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
24 |
22 23
|
dvres |
|- ( ( ( RR C_ CC /\ ( y e. RR |-> ( ( sin ` ( A x. y ) ) / A ) ) : RR --> CC ) /\ ( RR C_ RR /\ ( B [,] C ) C_ RR ) ) -> ( RR _D ( ( y e. RR |-> ( ( sin ` ( A x. y ) ) / A ) ) |` ( B [,] C ) ) ) = ( ( RR _D ( y e. RR |-> ( ( sin ` ( A x. y ) ) / A ) ) ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( B [,] C ) ) ) ) |
25 |
11 20 21 6 24
|
syl22anc |
|- ( ph -> ( RR _D ( ( y e. RR |-> ( ( sin ` ( A x. y ) ) / A ) ) |` ( B [,] C ) ) ) = ( ( RR _D ( y e. RR |-> ( ( sin ` ( A x. y ) ) / A ) ) ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( B [,] C ) ) ) ) |
26 |
|
reelprrecn |
|- RR e. { RR , CC } |
27 |
26
|
a1i |
|- ( ph -> RR e. { RR , CC } ) |
28 |
12 16
|
syldan |
|- ( ( ph /\ y e. RR ) -> ( sin ` ( A x. y ) ) e. CC ) |
29 |
1
|
adantr |
|- ( ( ph /\ y e. RR ) -> A e. CC ) |
30 |
29 12
|
mulcld |
|- ( ( ph /\ y e. RR ) -> ( A x. y ) e. CC ) |
31 |
30
|
coscld |
|- ( ( ph /\ y e. RR ) -> ( cos ` ( A x. y ) ) e. CC ) |
32 |
29 31
|
mulcld |
|- ( ( ph /\ y e. RR ) -> ( A x. ( cos ` ( A x. y ) ) ) e. CC ) |
33 |
11
|
resmptd |
|- ( ph -> ( ( y e. CC |-> ( sin ` ( A x. y ) ) ) |` RR ) = ( y e. RR |-> ( sin ` ( A x. y ) ) ) ) |
34 |
33
|
eqcomd |
|- ( ph -> ( y e. RR |-> ( sin ` ( A x. y ) ) ) = ( ( y e. CC |-> ( sin ` ( A x. y ) ) ) |` RR ) ) |
35 |
34
|
oveq2d |
|- ( ph -> ( RR _D ( y e. RR |-> ( sin ` ( A x. y ) ) ) ) = ( RR _D ( ( y e. CC |-> ( sin ` ( A x. y ) ) ) |` RR ) ) ) |
36 |
16
|
fmpttd |
|- ( ph -> ( y e. CC |-> ( sin ` ( A x. y ) ) ) : CC --> CC ) |
37 |
|
ssidd |
|- ( ph -> CC C_ CC ) |
38 |
|
dvsinax |
|- ( A e. CC -> ( CC _D ( y e. CC |-> ( sin ` ( A x. y ) ) ) ) = ( y e. CC |-> ( A x. ( cos ` ( A x. y ) ) ) ) ) |
39 |
1 38
|
syl |
|- ( ph -> ( CC _D ( y e. CC |-> ( sin ` ( A x. y ) ) ) ) = ( y e. CC |-> ( A x. ( cos ` ( A x. y ) ) ) ) ) |
40 |
39
|
dmeqd |
|- ( ph -> dom ( CC _D ( y e. CC |-> ( sin ` ( A x. y ) ) ) ) = dom ( y e. CC |-> ( A x. ( cos ` ( A x. y ) ) ) ) ) |
41 |
15
|
coscld |
|- ( ( ph /\ y e. CC ) -> ( cos ` ( A x. y ) ) e. CC ) |
42 |
13 41
|
mulcld |
|- ( ( ph /\ y e. CC ) -> ( A x. ( cos ` ( A x. y ) ) ) e. CC ) |
43 |
42
|
ralrimiva |
|- ( ph -> A. y e. CC ( A x. ( cos ` ( A x. y ) ) ) e. CC ) |
44 |
|
dmmptg |
|- ( A. y e. CC ( A x. ( cos ` ( A x. y ) ) ) e. CC -> dom ( y e. CC |-> ( A x. ( cos ` ( A x. y ) ) ) ) = CC ) |
45 |
43 44
|
syl |
|- ( ph -> dom ( y e. CC |-> ( A x. ( cos ` ( A x. y ) ) ) ) = CC ) |
46 |
40 45
|
eqtr2d |
|- ( ph -> CC = dom ( CC _D ( y e. CC |-> ( sin ` ( A x. y ) ) ) ) ) |
47 |
10 46
|
sseqtrid |
|- ( ph -> RR C_ dom ( CC _D ( y e. CC |-> ( sin ` ( A x. y ) ) ) ) ) |
48 |
|
dvres3 |
|- ( ( ( RR e. { RR , CC } /\ ( y e. CC |-> ( sin ` ( A x. y ) ) ) : CC --> CC ) /\ ( CC C_ CC /\ RR C_ dom ( CC _D ( y e. CC |-> ( sin ` ( A x. y ) ) ) ) ) ) -> ( RR _D ( ( y e. CC |-> ( sin ` ( A x. y ) ) ) |` RR ) ) = ( ( CC _D ( y e. CC |-> ( sin ` ( A x. y ) ) ) ) |` RR ) ) |
49 |
27 36 37 47 48
|
syl22anc |
|- ( ph -> ( RR _D ( ( y e. CC |-> ( sin ` ( A x. y ) ) ) |` RR ) ) = ( ( CC _D ( y e. CC |-> ( sin ` ( A x. y ) ) ) ) |` RR ) ) |
50 |
39
|
reseq1d |
|- ( ph -> ( ( CC _D ( y e. CC |-> ( sin ` ( A x. y ) ) ) ) |` RR ) = ( ( y e. CC |-> ( A x. ( cos ` ( A x. y ) ) ) ) |` RR ) ) |
51 |
11
|
resmptd |
|- ( ph -> ( ( y e. CC |-> ( A x. ( cos ` ( A x. y ) ) ) ) |` RR ) = ( y e. RR |-> ( A x. ( cos ` ( A x. y ) ) ) ) ) |
52 |
49 50 51
|
3eqtrd |
|- ( ph -> ( RR _D ( ( y e. CC |-> ( sin ` ( A x. y ) ) ) |` RR ) ) = ( y e. RR |-> ( A x. ( cos ` ( A x. y ) ) ) ) ) |
53 |
35 52
|
eqtrd |
|- ( ph -> ( RR _D ( y e. RR |-> ( sin ` ( A x. y ) ) ) ) = ( y e. RR |-> ( A x. ( cos ` ( A x. y ) ) ) ) ) |
54 |
27 28 32 53 1 5
|
dvmptdivc |
|- ( ph -> ( RR _D ( y e. RR |-> ( ( sin ` ( A x. y ) ) / A ) ) ) = ( y e. RR |-> ( ( A x. ( cos ` ( A x. y ) ) ) / A ) ) ) |
55 |
|
iccntr |
|- ( ( B e. RR /\ C e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( B [,] C ) ) = ( B (,) C ) ) |
56 |
2 3 55
|
syl2anc |
|- ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` ( B [,] C ) ) = ( B (,) C ) ) |
57 |
54 56
|
reseq12d |
|- ( ph -> ( ( RR _D ( y e. RR |-> ( ( sin ` ( A x. y ) ) / A ) ) ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( B [,] C ) ) ) = ( ( y e. RR |-> ( ( A x. ( cos ` ( A x. y ) ) ) / A ) ) |` ( B (,) C ) ) ) |
58 |
|
ioossre |
|- ( B (,) C ) C_ RR |
59 |
|
resmpt |
|- ( ( B (,) C ) C_ RR -> ( ( y e. RR |-> ( ( A x. ( cos ` ( A x. y ) ) ) / A ) ) |` ( B (,) C ) ) = ( y e. ( B (,) C ) |-> ( ( A x. ( cos ` ( A x. y ) ) ) / A ) ) ) |
60 |
58 59
|
mp1i |
|- ( ph -> ( ( y e. RR |-> ( ( A x. ( cos ` ( A x. y ) ) ) / A ) ) |` ( B (,) C ) ) = ( y e. ( B (,) C ) |-> ( ( A x. ( cos ` ( A x. y ) ) ) / A ) ) ) |
61 |
|
elioore |
|- ( y e. ( B (,) C ) -> y e. RR ) |
62 |
61
|
recnd |
|- ( y e. ( B (,) C ) -> y e. CC ) |
63 |
62 41
|
sylan2 |
|- ( ( ph /\ y e. ( B (,) C ) ) -> ( cos ` ( A x. y ) ) e. CC ) |
64 |
1
|
adantr |
|- ( ( ph /\ y e. ( B (,) C ) ) -> A e. CC ) |
65 |
5
|
adantr |
|- ( ( ph /\ y e. ( B (,) C ) ) -> A =/= 0 ) |
66 |
63 64 65
|
divcan3d |
|- ( ( ph /\ y e. ( B (,) C ) ) -> ( ( A x. ( cos ` ( A x. y ) ) ) / A ) = ( cos ` ( A x. y ) ) ) |
67 |
66
|
mpteq2dva |
|- ( ph -> ( y e. ( B (,) C ) |-> ( ( A x. ( cos ` ( A x. y ) ) ) / A ) ) = ( y e. ( B (,) C ) |-> ( cos ` ( A x. y ) ) ) ) |
68 |
57 60 67
|
3eqtrd |
|- ( ph -> ( ( RR _D ( y e. RR |-> ( ( sin ` ( A x. y ) ) / A ) ) ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( B [,] C ) ) ) = ( y e. ( B (,) C ) |-> ( cos ` ( A x. y ) ) ) ) |
69 |
9 25 68
|
3eqtrd |
|- ( ph -> ( RR _D ( y e. ( B [,] C ) |-> ( ( sin ` ( A x. y ) ) / A ) ) ) = ( y e. ( B (,) C ) |-> ( cos ` ( A x. y ) ) ) ) |
70 |
69
|
adantr |
|- ( ( ph /\ x e. ( B (,) C ) ) -> ( RR _D ( y e. ( B [,] C ) |-> ( ( sin ` ( A x. y ) ) / A ) ) ) = ( y e. ( B (,) C ) |-> ( cos ` ( A x. y ) ) ) ) |
71 |
|
oveq2 |
|- ( y = x -> ( A x. y ) = ( A x. x ) ) |
72 |
71
|
fveq2d |
|- ( y = x -> ( cos ` ( A x. y ) ) = ( cos ` ( A x. x ) ) ) |
73 |
72
|
adantl |
|- ( ( ( ph /\ x e. ( B (,) C ) ) /\ y = x ) -> ( cos ` ( A x. y ) ) = ( cos ` ( A x. x ) ) ) |
74 |
|
simpr |
|- ( ( ph /\ x e. ( B (,) C ) ) -> x e. ( B (,) C ) ) |
75 |
1
|
adantr |
|- ( ( ph /\ x e. ( B (,) C ) ) -> A e. CC ) |
76 |
58 11
|
sstrid |
|- ( ph -> ( B (,) C ) C_ CC ) |
77 |
76
|
sselda |
|- ( ( ph /\ x e. ( B (,) C ) ) -> x e. CC ) |
78 |
75 77
|
mulcld |
|- ( ( ph /\ x e. ( B (,) C ) ) -> ( A x. x ) e. CC ) |
79 |
78
|
coscld |
|- ( ( ph /\ x e. ( B (,) C ) ) -> ( cos ` ( A x. x ) ) e. CC ) |
80 |
70 73 74 79
|
fvmptd |
|- ( ( ph /\ x e. ( B (,) C ) ) -> ( ( RR _D ( y e. ( B [,] C ) |-> ( ( sin ` ( A x. y ) ) / A ) ) ) ` x ) = ( cos ` ( A x. x ) ) ) |
81 |
80
|
eqcomd |
|- ( ( ph /\ x e. ( B (,) C ) ) -> ( cos ` ( A x. x ) ) = ( ( RR _D ( y e. ( B [,] C ) |-> ( ( sin ` ( A x. y ) ) / A ) ) ) ` x ) ) |
82 |
81
|
itgeq2dv |
|- ( ph -> S. ( B (,) C ) ( cos ` ( A x. x ) ) _d x = S. ( B (,) C ) ( ( RR _D ( y e. ( B [,] C ) |-> ( ( sin ` ( A x. y ) ) / A ) ) ) ` x ) _d x ) |
83 |
|
eqidd |
|- ( ph -> ( y e. ( B [,] C ) |-> ( ( sin ` ( A x. y ) ) / A ) ) = ( y e. ( B [,] C ) |-> ( ( sin ` ( A x. y ) ) / A ) ) ) |
84 |
|
oveq2 |
|- ( y = C -> ( A x. y ) = ( A x. C ) ) |
85 |
84
|
fveq2d |
|- ( y = C -> ( sin ` ( A x. y ) ) = ( sin ` ( A x. C ) ) ) |
86 |
85
|
oveq1d |
|- ( y = C -> ( ( sin ` ( A x. y ) ) / A ) = ( ( sin ` ( A x. C ) ) / A ) ) |
87 |
86
|
adantl |
|- ( ( ph /\ y = C ) -> ( ( sin ` ( A x. y ) ) / A ) = ( ( sin ` ( A x. C ) ) / A ) ) |
88 |
2
|
rexrd |
|- ( ph -> B e. RR* ) |
89 |
3
|
rexrd |
|- ( ph -> C e. RR* ) |
90 |
|
ubicc2 |
|- ( ( B e. RR* /\ C e. RR* /\ B <_ C ) -> C e. ( B [,] C ) ) |
91 |
88 89 4 90
|
syl3anc |
|- ( ph -> C e. ( B [,] C ) ) |
92 |
3
|
recnd |
|- ( ph -> C e. CC ) |
93 |
1 92
|
mulcld |
|- ( ph -> ( A x. C ) e. CC ) |
94 |
93
|
sincld |
|- ( ph -> ( sin ` ( A x. C ) ) e. CC ) |
95 |
94 1 5
|
divcld |
|- ( ph -> ( ( sin ` ( A x. C ) ) / A ) e. CC ) |
96 |
83 87 91 95
|
fvmptd |
|- ( ph -> ( ( y e. ( B [,] C ) |-> ( ( sin ` ( A x. y ) ) / A ) ) ` C ) = ( ( sin ` ( A x. C ) ) / A ) ) |
97 |
|
oveq2 |
|- ( y = B -> ( A x. y ) = ( A x. B ) ) |
98 |
97
|
fveq2d |
|- ( y = B -> ( sin ` ( A x. y ) ) = ( sin ` ( A x. B ) ) ) |
99 |
98
|
oveq1d |
|- ( y = B -> ( ( sin ` ( A x. y ) ) / A ) = ( ( sin ` ( A x. B ) ) / A ) ) |
100 |
99
|
adantl |
|- ( ( ph /\ y = B ) -> ( ( sin ` ( A x. y ) ) / A ) = ( ( sin ` ( A x. B ) ) / A ) ) |
101 |
|
lbicc2 |
|- ( ( B e. RR* /\ C e. RR* /\ B <_ C ) -> B e. ( B [,] C ) ) |
102 |
88 89 4 101
|
syl3anc |
|- ( ph -> B e. ( B [,] C ) ) |
103 |
2
|
recnd |
|- ( ph -> B e. CC ) |
104 |
1 103
|
mulcld |
|- ( ph -> ( A x. B ) e. CC ) |
105 |
104
|
sincld |
|- ( ph -> ( sin ` ( A x. B ) ) e. CC ) |
106 |
105 1 5
|
divcld |
|- ( ph -> ( ( sin ` ( A x. B ) ) / A ) e. CC ) |
107 |
83 100 102 106
|
fvmptd |
|- ( ph -> ( ( y e. ( B [,] C ) |-> ( ( sin ` ( A x. y ) ) / A ) ) ` B ) = ( ( sin ` ( A x. B ) ) / A ) ) |
108 |
96 107
|
oveq12d |
|- ( ph -> ( ( ( y e. ( B [,] C ) |-> ( ( sin ` ( A x. y ) ) / A ) ) ` C ) - ( ( y e. ( B [,] C ) |-> ( ( sin ` ( A x. y ) ) / A ) ) ` B ) ) = ( ( ( sin ` ( A x. C ) ) / A ) - ( ( sin ` ( A x. B ) ) / A ) ) ) |
109 |
|
coscn |
|- cos e. ( CC -cn-> CC ) |
110 |
109
|
a1i |
|- ( ph -> cos e. ( CC -cn-> CC ) ) |
111 |
76 1 37
|
constcncfg |
|- ( ph -> ( y e. ( B (,) C ) |-> A ) e. ( ( B (,) C ) -cn-> CC ) ) |
112 |
76 37
|
idcncfg |
|- ( ph -> ( y e. ( B (,) C ) |-> y ) e. ( ( B (,) C ) -cn-> CC ) ) |
113 |
111 112
|
mulcncf |
|- ( ph -> ( y e. ( B (,) C ) |-> ( A x. y ) ) e. ( ( B (,) C ) -cn-> CC ) ) |
114 |
110 113
|
cncfmpt1f |
|- ( ph -> ( y e. ( B (,) C ) |-> ( cos ` ( A x. y ) ) ) e. ( ( B (,) C ) -cn-> CC ) ) |
115 |
69 114
|
eqeltrd |
|- ( ph -> ( RR _D ( y e. ( B [,] C ) |-> ( ( sin ` ( A x. y ) ) / A ) ) ) e. ( ( B (,) C ) -cn-> CC ) ) |
116 |
|
ioossicc |
|- ( B (,) C ) C_ ( B [,] C ) |
117 |
116
|
a1i |
|- ( ph -> ( B (,) C ) C_ ( B [,] C ) ) |
118 |
|
ioombl |
|- ( B (,) C ) e. dom vol |
119 |
118
|
a1i |
|- ( ph -> ( B (,) C ) e. dom vol ) |
120 |
1
|
adantr |
|- ( ( ph /\ y e. ( B [,] C ) ) -> A e. CC ) |
121 |
6 10
|
sstrdi |
|- ( ph -> ( B [,] C ) C_ CC ) |
122 |
121
|
sselda |
|- ( ( ph /\ y e. ( B [,] C ) ) -> y e. CC ) |
123 |
120 122
|
mulcld |
|- ( ( ph /\ y e. ( B [,] C ) ) -> ( A x. y ) e. CC ) |
124 |
123
|
coscld |
|- ( ( ph /\ y e. ( B [,] C ) ) -> ( cos ` ( A x. y ) ) e. CC ) |
125 |
121 1 37
|
constcncfg |
|- ( ph -> ( y e. ( B [,] C ) |-> A ) e. ( ( B [,] C ) -cn-> CC ) ) |
126 |
121 37
|
idcncfg |
|- ( ph -> ( y e. ( B [,] C ) |-> y ) e. ( ( B [,] C ) -cn-> CC ) ) |
127 |
125 126
|
mulcncf |
|- ( ph -> ( y e. ( B [,] C ) |-> ( A x. y ) ) e. ( ( B [,] C ) -cn-> CC ) ) |
128 |
110 127
|
cncfmpt1f |
|- ( ph -> ( y e. ( B [,] C ) |-> ( cos ` ( A x. y ) ) ) e. ( ( B [,] C ) -cn-> CC ) ) |
129 |
|
cniccibl |
|- ( ( B e. RR /\ C e. RR /\ ( y e. ( B [,] C ) |-> ( cos ` ( A x. y ) ) ) e. ( ( B [,] C ) -cn-> CC ) ) -> ( y e. ( B [,] C ) |-> ( cos ` ( A x. y ) ) ) e. L^1 ) |
130 |
2 3 128 129
|
syl3anc |
|- ( ph -> ( y e. ( B [,] C ) |-> ( cos ` ( A x. y ) ) ) e. L^1 ) |
131 |
117 119 124 130
|
iblss |
|- ( ph -> ( y e. ( B (,) C ) |-> ( cos ` ( A x. y ) ) ) e. L^1 ) |
132 |
69 131
|
eqeltrd |
|- ( ph -> ( RR _D ( y e. ( B [,] C ) |-> ( ( sin ` ( A x. y ) ) / A ) ) ) e. L^1 ) |
133 |
|
sincn |
|- sin e. ( CC -cn-> CC ) |
134 |
133
|
a1i |
|- ( ph -> sin e. ( CC -cn-> CC ) ) |
135 |
134 127
|
cncfmpt1f |
|- ( ph -> ( y e. ( B [,] C ) |-> ( sin ` ( A x. y ) ) ) e. ( ( B [,] C ) -cn-> CC ) ) |
136 |
|
neneq |
|- ( A =/= 0 -> -. A = 0 ) |
137 |
|
elsni |
|- ( A e. { 0 } -> A = 0 ) |
138 |
137
|
con3i |
|- ( -. A = 0 -> -. A e. { 0 } ) |
139 |
5 136 138
|
3syl |
|- ( ph -> -. A e. { 0 } ) |
140 |
1 139
|
eldifd |
|- ( ph -> A e. ( CC \ { 0 } ) ) |
141 |
|
difssd |
|- ( ph -> ( CC \ { 0 } ) C_ CC ) |
142 |
121 140 141
|
constcncfg |
|- ( ph -> ( y e. ( B [,] C ) |-> A ) e. ( ( B [,] C ) -cn-> ( CC \ { 0 } ) ) ) |
143 |
135 142
|
divcncf |
|- ( ph -> ( y e. ( B [,] C ) |-> ( ( sin ` ( A x. y ) ) / A ) ) e. ( ( B [,] C ) -cn-> CC ) ) |
144 |
2 3 4 115 132 143
|
ftc2 |
|- ( ph -> S. ( B (,) C ) ( ( RR _D ( y e. ( B [,] C ) |-> ( ( sin ` ( A x. y ) ) / A ) ) ) ` x ) _d x = ( ( ( y e. ( B [,] C ) |-> ( ( sin ` ( A x. y ) ) / A ) ) ` C ) - ( ( y e. ( B [,] C ) |-> ( ( sin ` ( A x. y ) ) / A ) ) ` B ) ) ) |
145 |
94 105 1 5
|
divsubdird |
|- ( ph -> ( ( ( sin ` ( A x. C ) ) - ( sin ` ( A x. B ) ) ) / A ) = ( ( ( sin ` ( A x. C ) ) / A ) - ( ( sin ` ( A x. B ) ) / A ) ) ) |
146 |
108 144 145
|
3eqtr4d |
|- ( ph -> S. ( B (,) C ) ( ( RR _D ( y e. ( B [,] C ) |-> ( ( sin ` ( A x. y ) ) / A ) ) ) ` x ) _d x = ( ( ( sin ` ( A x. C ) ) - ( sin ` ( A x. B ) ) ) / A ) ) |
147 |
82 146
|
eqtrd |
|- ( ph -> S. ( B (,) C ) ( cos ` ( A x. x ) ) _d x = ( ( ( sin ` ( A x. C ) ) - ( sin ` ( A x. B ) ) ) / A ) ) |