Description: Equality theorem for an integral. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | itgeq1d.aeqb | |- ( ph -> A = B ) |
|
Assertion | itgeq1d | |- ( ph -> S. A C _d x = S. B C _d x ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itgeq1d.aeqb | |- ( ph -> A = B ) |
|
2 | itgeq1 | |- ( A = B -> S. A C _d x = S. B C _d x ) |
|
3 | 1 2 | syl | |- ( ph -> S. A C _d x = S. B C _d x ) |