Metamath Proof Explorer


Theorem itgeq1d

Description: Equality theorem for an integral. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypothesis itgeq1d.aeqb
|- ( ph -> A = B )
Assertion itgeq1d
|- ( ph -> S. A C _d x = S. B C _d x )

Proof

Step Hyp Ref Expression
1 itgeq1d.aeqb
 |-  ( ph -> A = B )
2 itgeq1
 |-  ( A = B -> S. A C _d x = S. B C _d x )
3 1 2 syl
 |-  ( ph -> S. A C _d x = S. B C _d x )