Description: Equality theorem for an integral. (Contributed by Mario Carneiro, 7-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | itgeq2dv.1 | |- ( ( ph /\ x e. A ) -> B = C ) |
|
Assertion | itgeq2dv | |- ( ph -> S. A B _d x = S. A C _d x ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itgeq2dv.1 | |- ( ( ph /\ x e. A ) -> B = C ) |
|
2 | 1 | ralrimiva | |- ( ph -> A. x e. A B = C ) |
3 | itgeq2 | |- ( A. x e. A B = C -> S. A B _d x = S. A C _d x ) |
|
4 | 2 3 | syl | |- ( ph -> S. A B _d x = S. A C _d x ) |