Description: Equality theorem for an integral. (Contributed by Mario Carneiro, 7-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | itgeq2dv.1 | |- ( ( ph /\ x e. A ) -> B = C ) | |
| Assertion | itgeq2dv | |- ( ph -> S. A B _d x = S. A C _d x ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | itgeq2dv.1 | |- ( ( ph /\ x e. A ) -> B = C ) | |
| 2 | 1 | ralrimiva | |- ( ph -> A. x e. A B = C ) | 
| 3 | itgeq2 | |- ( A. x e. A B = C -> S. A B _d x = S. A C _d x ) | |
| 4 | 2 3 | syl | |- ( ph -> S. A B _d x = S. A C _d x ) |