Description: An integral is a set. (Contributed by Mario Carneiro, 28-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | itgex | |- S. A B _d x e. _V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-itg | |- S. A B _d x = sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> [_ ( Re ` ( B / ( _i ^ k ) ) ) / y ]_ if ( ( x e. A /\ 0 <_ y ) , y , 0 ) ) ) ) |
|
2 | sumex | |- sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> [_ ( Re ` ( B / ( _i ^ k ) ) ) / y ]_ if ( ( x e. A /\ 0 <_ y ) , y , 0 ) ) ) ) e. _V |
|
3 | 1 2 | eqeltri | |- S. A B _d x e. _V |