| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itgge0.1 |  |-  ( ph -> ( x e. A |-> B ) e. L^1 ) | 
						
							| 2 |  | itgge0.2 |  |-  ( ( ph /\ x e. A ) -> B e. RR ) | 
						
							| 3 |  | itgge0.3 |  |-  ( ( ph /\ x e. A ) -> 0 <_ B ) | 
						
							| 4 |  | itgz |  |-  S. A 0 _d x = 0 | 
						
							| 5 |  | fconstmpt |  |-  ( A X. { 0 } ) = ( x e. A |-> 0 ) | 
						
							| 6 |  | iblmbf |  |-  ( ( x e. A |-> B ) e. L^1 -> ( x e. A |-> B ) e. MblFn ) | 
						
							| 7 | 1 6 | syl |  |-  ( ph -> ( x e. A |-> B ) e. MblFn ) | 
						
							| 8 | 7 2 | mbfdm2 |  |-  ( ph -> A e. dom vol ) | 
						
							| 9 |  | ibl0 |  |-  ( A e. dom vol -> ( A X. { 0 } ) e. L^1 ) | 
						
							| 10 | 8 9 | syl |  |-  ( ph -> ( A X. { 0 } ) e. L^1 ) | 
						
							| 11 | 5 10 | eqeltrrid |  |-  ( ph -> ( x e. A |-> 0 ) e. L^1 ) | 
						
							| 12 |  | 0red |  |-  ( ( ph /\ x e. A ) -> 0 e. RR ) | 
						
							| 13 | 11 1 12 2 3 | itgle |  |-  ( ph -> S. A 0 _d x <_ S. A B _d x ) | 
						
							| 14 | 4 13 | eqbrtrrid |  |-  ( ph -> 0 <_ S. A B _d x ) |