Step |
Hyp |
Ref |
Expression |
1 |
|
itgge0.1 |
|- ( ph -> ( x e. A |-> B ) e. L^1 ) |
2 |
|
itgge0.2 |
|- ( ( ph /\ x e. A ) -> B e. RR ) |
3 |
|
itgge0.3 |
|- ( ( ph /\ x e. A ) -> 0 <_ B ) |
4 |
|
itgz |
|- S. A 0 _d x = 0 |
5 |
|
fconstmpt |
|- ( A X. { 0 } ) = ( x e. A |-> 0 ) |
6 |
|
iblmbf |
|- ( ( x e. A |-> B ) e. L^1 -> ( x e. A |-> B ) e. MblFn ) |
7 |
1 6
|
syl |
|- ( ph -> ( x e. A |-> B ) e. MblFn ) |
8 |
7 2
|
mbfdm2 |
|- ( ph -> A e. dom vol ) |
9 |
|
ibl0 |
|- ( A e. dom vol -> ( A X. { 0 } ) e. L^1 ) |
10 |
8 9
|
syl |
|- ( ph -> ( A X. { 0 } ) e. L^1 ) |
11 |
5 10
|
eqeltrrid |
|- ( ph -> ( x e. A |-> 0 ) e. L^1 ) |
12 |
|
0red |
|- ( ( ph /\ x e. A ) -> 0 e. RR ) |
13 |
11 1 12 2 3
|
itgle |
|- ( ph -> S. A 0 _d x <_ S. A B _d x ) |
14 |
4 13
|
eqbrtrrid |
|- ( ph -> 0 <_ S. A B _d x ) |