| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itggt0.1 |
|- ( ph -> 0 < ( vol ` A ) ) |
| 2 |
|
itggt0.2 |
|- ( ph -> ( x e. A |-> B ) e. L^1 ) |
| 3 |
|
itggt0.3 |
|- ( ( ph /\ x e. A ) -> B e. RR+ ) |
| 4 |
|
iblmbf |
|- ( ( x e. A |-> B ) e. L^1 -> ( x e. A |-> B ) e. MblFn ) |
| 5 |
2 4
|
syl |
|- ( ph -> ( x e. A |-> B ) e. MblFn ) |
| 6 |
5 3
|
mbfdm2 |
|- ( ph -> A e. dom vol ) |
| 7 |
3
|
rpred |
|- ( ( ph /\ x e. A ) -> B e. RR ) |
| 8 |
3
|
rpge0d |
|- ( ( ph /\ x e. A ) -> 0 <_ B ) |
| 9 |
|
elrege0 |
|- ( B e. ( 0 [,) +oo ) <-> ( B e. RR /\ 0 <_ B ) ) |
| 10 |
7 8 9
|
sylanbrc |
|- ( ( ph /\ x e. A ) -> B e. ( 0 [,) +oo ) ) |
| 11 |
|
0e0icopnf |
|- 0 e. ( 0 [,) +oo ) |
| 12 |
11
|
a1i |
|- ( ( ph /\ -. x e. A ) -> 0 e. ( 0 [,) +oo ) ) |
| 13 |
10 12
|
ifclda |
|- ( ph -> if ( x e. A , B , 0 ) e. ( 0 [,) +oo ) ) |
| 14 |
13
|
adantr |
|- ( ( ph /\ x e. RR ) -> if ( x e. A , B , 0 ) e. ( 0 [,) +oo ) ) |
| 15 |
14
|
fmpttd |
|- ( ph -> ( x e. RR |-> if ( x e. A , B , 0 ) ) : RR --> ( 0 [,) +oo ) ) |
| 16 |
|
mblss |
|- ( A e. dom vol -> A C_ RR ) |
| 17 |
6 16
|
syl |
|- ( ph -> A C_ RR ) |
| 18 |
|
rembl |
|- RR e. dom vol |
| 19 |
18
|
a1i |
|- ( ph -> RR e. dom vol ) |
| 20 |
13
|
adantr |
|- ( ( ph /\ x e. A ) -> if ( x e. A , B , 0 ) e. ( 0 [,) +oo ) ) |
| 21 |
|
eldifn |
|- ( x e. ( RR \ A ) -> -. x e. A ) |
| 22 |
21
|
adantl |
|- ( ( ph /\ x e. ( RR \ A ) ) -> -. x e. A ) |
| 23 |
22
|
iffalsed |
|- ( ( ph /\ x e. ( RR \ A ) ) -> if ( x e. A , B , 0 ) = 0 ) |
| 24 |
|
iftrue |
|- ( x e. A -> if ( x e. A , B , 0 ) = B ) |
| 25 |
24
|
mpteq2ia |
|- ( x e. A |-> if ( x e. A , B , 0 ) ) = ( x e. A |-> B ) |
| 26 |
25 5
|
eqeltrid |
|- ( ph -> ( x e. A |-> if ( x e. A , B , 0 ) ) e. MblFn ) |
| 27 |
17 19 20 23 26
|
mbfss |
|- ( ph -> ( x e. RR |-> if ( x e. A , B , 0 ) ) e. MblFn ) |
| 28 |
3
|
rpgt0d |
|- ( ( ph /\ x e. A ) -> 0 < B ) |
| 29 |
17
|
sselda |
|- ( ( ph /\ x e. A ) -> x e. RR ) |
| 30 |
24
|
adantl |
|- ( ( ph /\ x e. A ) -> if ( x e. A , B , 0 ) = B ) |
| 31 |
30 3
|
eqeltrd |
|- ( ( ph /\ x e. A ) -> if ( x e. A , B , 0 ) e. RR+ ) |
| 32 |
|
eqid |
|- ( x e. RR |-> if ( x e. A , B , 0 ) ) = ( x e. RR |-> if ( x e. A , B , 0 ) ) |
| 33 |
32
|
fvmpt2 |
|- ( ( x e. RR /\ if ( x e. A , B , 0 ) e. RR+ ) -> ( ( x e. RR |-> if ( x e. A , B , 0 ) ) ` x ) = if ( x e. A , B , 0 ) ) |
| 34 |
29 31 33
|
syl2anc |
|- ( ( ph /\ x e. A ) -> ( ( x e. RR |-> if ( x e. A , B , 0 ) ) ` x ) = if ( x e. A , B , 0 ) ) |
| 35 |
34 30
|
eqtrd |
|- ( ( ph /\ x e. A ) -> ( ( x e. RR |-> if ( x e. A , B , 0 ) ) ` x ) = B ) |
| 36 |
28 35
|
breqtrrd |
|- ( ( ph /\ x e. A ) -> 0 < ( ( x e. RR |-> if ( x e. A , B , 0 ) ) ` x ) ) |
| 37 |
36
|
ralrimiva |
|- ( ph -> A. x e. A 0 < ( ( x e. RR |-> if ( x e. A , B , 0 ) ) ` x ) ) |
| 38 |
|
nfcv |
|- F/_ x 0 |
| 39 |
|
nfcv |
|- F/_ x < |
| 40 |
|
nffvmpt1 |
|- F/_ x ( ( x e. RR |-> if ( x e. A , B , 0 ) ) ` y ) |
| 41 |
38 39 40
|
nfbr |
|- F/ x 0 < ( ( x e. RR |-> if ( x e. A , B , 0 ) ) ` y ) |
| 42 |
|
nfv |
|- F/ y 0 < ( ( x e. RR |-> if ( x e. A , B , 0 ) ) ` x ) |
| 43 |
|
fveq2 |
|- ( y = x -> ( ( x e. RR |-> if ( x e. A , B , 0 ) ) ` y ) = ( ( x e. RR |-> if ( x e. A , B , 0 ) ) ` x ) ) |
| 44 |
43
|
breq2d |
|- ( y = x -> ( 0 < ( ( x e. RR |-> if ( x e. A , B , 0 ) ) ` y ) <-> 0 < ( ( x e. RR |-> if ( x e. A , B , 0 ) ) ` x ) ) ) |
| 45 |
41 42 44
|
cbvralw |
|- ( A. y e. A 0 < ( ( x e. RR |-> if ( x e. A , B , 0 ) ) ` y ) <-> A. x e. A 0 < ( ( x e. RR |-> if ( x e. A , B , 0 ) ) ` x ) ) |
| 46 |
37 45
|
sylibr |
|- ( ph -> A. y e. A 0 < ( ( x e. RR |-> if ( x e. A , B , 0 ) ) ` y ) ) |
| 47 |
46
|
r19.21bi |
|- ( ( ph /\ y e. A ) -> 0 < ( ( x e. RR |-> if ( x e. A , B , 0 ) ) ` y ) ) |
| 48 |
6 1 15 27 47
|
itg2gt0 |
|- ( ph -> 0 < ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) ) |
| 49 |
7 2 8
|
itgposval |
|- ( ph -> S. A B _d x = ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) ) |
| 50 |
48 49
|
breqtrrd |
|- ( ph -> 0 < S. A B _d x ) |