| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itgioo.1 |  |-  ( ph -> A e. RR ) | 
						
							| 2 |  | itgioo.2 |  |-  ( ph -> B e. RR ) | 
						
							| 3 |  | itgioo.3 |  |-  ( ( ph /\ x e. ( A [,] B ) ) -> C e. CC ) | 
						
							| 4 |  | ioossicc |  |-  ( A (,) B ) C_ ( A [,] B ) | 
						
							| 5 | 4 | a1i |  |-  ( ph -> ( A (,) B ) C_ ( A [,] B ) ) | 
						
							| 6 |  | iccssre |  |-  ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) | 
						
							| 7 | 1 2 6 | syl2anc |  |-  ( ph -> ( A [,] B ) C_ RR ) | 
						
							| 8 | 1 | rexrd |  |-  ( ph -> A e. RR* ) | 
						
							| 9 | 2 | rexrd |  |-  ( ph -> B e. RR* ) | 
						
							| 10 |  | icc0 |  |-  ( ( A e. RR* /\ B e. RR* ) -> ( ( A [,] B ) = (/) <-> B < A ) ) | 
						
							| 11 | 8 9 10 | syl2anc |  |-  ( ph -> ( ( A [,] B ) = (/) <-> B < A ) ) | 
						
							| 12 | 11 | biimpar |  |-  ( ( ph /\ B < A ) -> ( A [,] B ) = (/) ) | 
						
							| 13 | 12 | difeq1d |  |-  ( ( ph /\ B < A ) -> ( ( A [,] B ) \ ( A (,) B ) ) = ( (/) \ ( A (,) B ) ) ) | 
						
							| 14 |  | 0dif |  |-  ( (/) \ ( A (,) B ) ) = (/) | 
						
							| 15 |  | 0ss |  |-  (/) C_ { A , B } | 
						
							| 16 | 14 15 | eqsstri |  |-  ( (/) \ ( A (,) B ) ) C_ { A , B } | 
						
							| 17 | 13 16 | eqsstrdi |  |-  ( ( ph /\ B < A ) -> ( ( A [,] B ) \ ( A (,) B ) ) C_ { A , B } ) | 
						
							| 18 |  | uncom |  |-  ( { A , B } u. ( A (,) B ) ) = ( ( A (,) B ) u. { A , B } ) | 
						
							| 19 | 8 | adantr |  |-  ( ( ph /\ A <_ B ) -> A e. RR* ) | 
						
							| 20 | 9 | adantr |  |-  ( ( ph /\ A <_ B ) -> B e. RR* ) | 
						
							| 21 |  | simpr |  |-  ( ( ph /\ A <_ B ) -> A <_ B ) | 
						
							| 22 |  | prunioo |  |-  ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> ( ( A (,) B ) u. { A , B } ) = ( A [,] B ) ) | 
						
							| 23 | 19 20 21 22 | syl3anc |  |-  ( ( ph /\ A <_ B ) -> ( ( A (,) B ) u. { A , B } ) = ( A [,] B ) ) | 
						
							| 24 | 18 23 | eqtr2id |  |-  ( ( ph /\ A <_ B ) -> ( A [,] B ) = ( { A , B } u. ( A (,) B ) ) ) | 
						
							| 25 | 24 | difeq1d |  |-  ( ( ph /\ A <_ B ) -> ( ( A [,] B ) \ ( A (,) B ) ) = ( ( { A , B } u. ( A (,) B ) ) \ ( A (,) B ) ) ) | 
						
							| 26 |  | difun2 |  |-  ( ( { A , B } u. ( A (,) B ) ) \ ( A (,) B ) ) = ( { A , B } \ ( A (,) B ) ) | 
						
							| 27 | 25 26 | eqtrdi |  |-  ( ( ph /\ A <_ B ) -> ( ( A [,] B ) \ ( A (,) B ) ) = ( { A , B } \ ( A (,) B ) ) ) | 
						
							| 28 |  | difss |  |-  ( { A , B } \ ( A (,) B ) ) C_ { A , B } | 
						
							| 29 | 27 28 | eqsstrdi |  |-  ( ( ph /\ A <_ B ) -> ( ( A [,] B ) \ ( A (,) B ) ) C_ { A , B } ) | 
						
							| 30 | 17 29 2 1 | ltlecasei |  |-  ( ph -> ( ( A [,] B ) \ ( A (,) B ) ) C_ { A , B } ) | 
						
							| 31 | 1 2 | prssd |  |-  ( ph -> { A , B } C_ RR ) | 
						
							| 32 |  | prfi |  |-  { A , B } e. Fin | 
						
							| 33 |  | ovolfi |  |-  ( ( { A , B } e. Fin /\ { A , B } C_ RR ) -> ( vol* ` { A , B } ) = 0 ) | 
						
							| 34 | 32 31 33 | sylancr |  |-  ( ph -> ( vol* ` { A , B } ) = 0 ) | 
						
							| 35 |  | ovolssnul |  |-  ( ( ( ( A [,] B ) \ ( A (,) B ) ) C_ { A , B } /\ { A , B } C_ RR /\ ( vol* ` { A , B } ) = 0 ) -> ( vol* ` ( ( A [,] B ) \ ( A (,) B ) ) ) = 0 ) | 
						
							| 36 | 30 31 34 35 | syl3anc |  |-  ( ph -> ( vol* ` ( ( A [,] B ) \ ( A (,) B ) ) ) = 0 ) | 
						
							| 37 | 5 7 36 3 | itgss3 |  |-  ( ph -> ( ( ( x e. ( A (,) B ) |-> C ) e. L^1 <-> ( x e. ( A [,] B ) |-> C ) e. L^1 ) /\ S. ( A (,) B ) C _d x = S. ( A [,] B ) C _d x ) ) | 
						
							| 38 | 37 | simprd |  |-  ( ph -> S. ( A (,) B ) C _d x = S. ( A [,] B ) C _d x ) |