Step |
Hyp |
Ref |
Expression |
1 |
|
itgitg2.1 |
|- ( ( ph /\ x e. RR ) -> A e. RR ) |
2 |
|
itgitg2.2 |
|- ( ( ph /\ x e. RR ) -> 0 <_ A ) |
3 |
|
itgitg2.3 |
|- ( ph -> ( x e. RR |-> A ) e. L^1 ) |
4 |
1 3 2
|
itgposval |
|- ( ph -> S. RR A _d x = ( S.2 ` ( x e. RR |-> if ( x e. RR , A , 0 ) ) ) ) |
5 |
|
iftrue |
|- ( x e. RR -> if ( x e. RR , A , 0 ) = A ) |
6 |
5
|
mpteq2ia |
|- ( x e. RR |-> if ( x e. RR , A , 0 ) ) = ( x e. RR |-> A ) |
7 |
6
|
fveq2i |
|- ( S.2 ` ( x e. RR |-> if ( x e. RR , A , 0 ) ) ) = ( S.2 ` ( x e. RR |-> A ) ) |
8 |
4 7
|
eqtrdi |
|- ( ph -> S. RR A _d x = ( S.2 ` ( x e. RR |-> A ) ) ) |