| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itgitg2.1 |  |-  ( ( ph /\ x e. RR ) -> A e. RR ) | 
						
							| 2 |  | itgitg2.2 |  |-  ( ( ph /\ x e. RR ) -> 0 <_ A ) | 
						
							| 3 |  | itgitg2.3 |  |-  ( ph -> ( x e. RR |-> A ) e. L^1 ) | 
						
							| 4 | 1 3 2 | itgposval |  |-  ( ph -> S. RR A _d x = ( S.2 ` ( x e. RR |-> if ( x e. RR , A , 0 ) ) ) ) | 
						
							| 5 |  | iftrue |  |-  ( x e. RR -> if ( x e. RR , A , 0 ) = A ) | 
						
							| 6 | 5 | mpteq2ia |  |-  ( x e. RR |-> if ( x e. RR , A , 0 ) ) = ( x e. RR |-> A ) | 
						
							| 7 | 6 | fveq2i |  |-  ( S.2 ` ( x e. RR |-> if ( x e. RR , A , 0 ) ) ) = ( S.2 ` ( x e. RR |-> A ) ) | 
						
							| 8 | 4 7 | eqtrdi |  |-  ( ph -> S. RR A _d x = ( S.2 ` ( x e. RR |-> A ) ) ) |