| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itgmulc2.1 |  |-  ( ph -> C e. CC ) | 
						
							| 2 |  | itgmulc2.2 |  |-  ( ( ph /\ x e. A ) -> B e. V ) | 
						
							| 3 |  | itgmulc2.3 |  |-  ( ph -> ( x e. A |-> B ) e. L^1 ) | 
						
							| 4 |  | itgmulc2.4 |  |-  ( ph -> C e. RR ) | 
						
							| 5 |  | itgmulc2.5 |  |-  ( ( ph /\ x e. A ) -> B e. RR ) | 
						
							| 6 |  | itgmulc2.6 |  |-  ( ph -> 0 <_ C ) | 
						
							| 7 |  | itgmulc2.7 |  |-  ( ( ph /\ x e. A ) -> 0 <_ B ) | 
						
							| 8 |  | elrege0 |  |-  ( B e. ( 0 [,) +oo ) <-> ( B e. RR /\ 0 <_ B ) ) | 
						
							| 9 | 5 7 8 | sylanbrc |  |-  ( ( ph /\ x e. A ) -> B e. ( 0 [,) +oo ) ) | 
						
							| 10 |  | 0e0icopnf |  |-  0 e. ( 0 [,) +oo ) | 
						
							| 11 | 10 | a1i |  |-  ( ( ph /\ -. x e. A ) -> 0 e. ( 0 [,) +oo ) ) | 
						
							| 12 | 9 11 | ifclda |  |-  ( ph -> if ( x e. A , B , 0 ) e. ( 0 [,) +oo ) ) | 
						
							| 13 | 12 | adantr |  |-  ( ( ph /\ x e. RR ) -> if ( x e. A , B , 0 ) e. ( 0 [,) +oo ) ) | 
						
							| 14 | 13 | fmpttd |  |-  ( ph -> ( x e. RR |-> if ( x e. A , B , 0 ) ) : RR --> ( 0 [,) +oo ) ) | 
						
							| 15 | 5 7 | iblpos |  |-  ( ph -> ( ( x e. A |-> B ) e. L^1 <-> ( ( x e. A |-> B ) e. MblFn /\ ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) e. RR ) ) ) | 
						
							| 16 | 3 15 | mpbid |  |-  ( ph -> ( ( x e. A |-> B ) e. MblFn /\ ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) e. RR ) ) | 
						
							| 17 | 16 | simprd |  |-  ( ph -> ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) e. RR ) | 
						
							| 18 |  | elrege0 |  |-  ( C e. ( 0 [,) +oo ) <-> ( C e. RR /\ 0 <_ C ) ) | 
						
							| 19 | 4 6 18 | sylanbrc |  |-  ( ph -> C e. ( 0 [,) +oo ) ) | 
						
							| 20 | 14 17 19 | itg2mulc |  |-  ( ph -> ( S.2 ` ( ( RR X. { C } ) oF x. ( x e. RR |-> if ( x e. A , B , 0 ) ) ) ) = ( C x. ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) ) ) | 
						
							| 21 |  | reex |  |-  RR e. _V | 
						
							| 22 | 21 | a1i |  |-  ( ph -> RR e. _V ) | 
						
							| 23 | 4 | adantr |  |-  ( ( ph /\ x e. RR ) -> C e. RR ) | 
						
							| 24 |  | fconstmpt |  |-  ( RR X. { C } ) = ( x e. RR |-> C ) | 
						
							| 25 | 24 | a1i |  |-  ( ph -> ( RR X. { C } ) = ( x e. RR |-> C ) ) | 
						
							| 26 |  | eqidd |  |-  ( ph -> ( x e. RR |-> if ( x e. A , B , 0 ) ) = ( x e. RR |-> if ( x e. A , B , 0 ) ) ) | 
						
							| 27 | 22 23 13 25 26 | offval2 |  |-  ( ph -> ( ( RR X. { C } ) oF x. ( x e. RR |-> if ( x e. A , B , 0 ) ) ) = ( x e. RR |-> ( C x. if ( x e. A , B , 0 ) ) ) ) | 
						
							| 28 |  | ovif2 |  |-  ( C x. if ( x e. A , B , 0 ) ) = if ( x e. A , ( C x. B ) , ( C x. 0 ) ) | 
						
							| 29 | 1 | mul01d |  |-  ( ph -> ( C x. 0 ) = 0 ) | 
						
							| 30 | 29 | adantr |  |-  ( ( ph /\ x e. RR ) -> ( C x. 0 ) = 0 ) | 
						
							| 31 | 30 | ifeq2d |  |-  ( ( ph /\ x e. RR ) -> if ( x e. A , ( C x. B ) , ( C x. 0 ) ) = if ( x e. A , ( C x. B ) , 0 ) ) | 
						
							| 32 | 28 31 | eqtrid |  |-  ( ( ph /\ x e. RR ) -> ( C x. if ( x e. A , B , 0 ) ) = if ( x e. A , ( C x. B ) , 0 ) ) | 
						
							| 33 | 32 | mpteq2dva |  |-  ( ph -> ( x e. RR |-> ( C x. if ( x e. A , B , 0 ) ) ) = ( x e. RR |-> if ( x e. A , ( C x. B ) , 0 ) ) ) | 
						
							| 34 | 27 33 | eqtrd |  |-  ( ph -> ( ( RR X. { C } ) oF x. ( x e. RR |-> if ( x e. A , B , 0 ) ) ) = ( x e. RR |-> if ( x e. A , ( C x. B ) , 0 ) ) ) | 
						
							| 35 | 34 | fveq2d |  |-  ( ph -> ( S.2 ` ( ( RR X. { C } ) oF x. ( x e. RR |-> if ( x e. A , B , 0 ) ) ) ) = ( S.2 ` ( x e. RR |-> if ( x e. A , ( C x. B ) , 0 ) ) ) ) | 
						
							| 36 | 20 35 | eqtr3d |  |-  ( ph -> ( C x. ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) ) = ( S.2 ` ( x e. RR |-> if ( x e. A , ( C x. B ) , 0 ) ) ) ) | 
						
							| 37 | 5 3 7 | itgposval |  |-  ( ph -> S. A B _d x = ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) ) | 
						
							| 38 | 37 | oveq2d |  |-  ( ph -> ( C x. S. A B _d x ) = ( C x. ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) ) ) | 
						
							| 39 | 4 | adantr |  |-  ( ( ph /\ x e. A ) -> C e. RR ) | 
						
							| 40 | 39 5 | remulcld |  |-  ( ( ph /\ x e. A ) -> ( C x. B ) e. RR ) | 
						
							| 41 | 1 2 3 | iblmulc2 |  |-  ( ph -> ( x e. A |-> ( C x. B ) ) e. L^1 ) | 
						
							| 42 | 6 | adantr |  |-  ( ( ph /\ x e. A ) -> 0 <_ C ) | 
						
							| 43 | 39 5 42 7 | mulge0d |  |-  ( ( ph /\ x e. A ) -> 0 <_ ( C x. B ) ) | 
						
							| 44 | 40 41 43 | itgposval |  |-  ( ph -> S. A ( C x. B ) _d x = ( S.2 ` ( x e. RR |-> if ( x e. A , ( C x. B ) , 0 ) ) ) ) | 
						
							| 45 | 36 38 44 | 3eqtr4d |  |-  ( ph -> ( C x. S. A B _d x ) = S. A ( C x. B ) _d x ) |