| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itgparts.x |  |-  ( ph -> X e. RR ) | 
						
							| 2 |  | itgparts.y |  |-  ( ph -> Y e. RR ) | 
						
							| 3 |  | itgparts.le |  |-  ( ph -> X <_ Y ) | 
						
							| 4 |  | itgparts.a |  |-  ( ph -> ( x e. ( X [,] Y ) |-> A ) e. ( ( X [,] Y ) -cn-> CC ) ) | 
						
							| 5 |  | itgparts.c |  |-  ( ph -> ( x e. ( X [,] Y ) |-> C ) e. ( ( X [,] Y ) -cn-> CC ) ) | 
						
							| 6 |  | itgparts.b |  |-  ( ph -> ( x e. ( X (,) Y ) |-> B ) e. ( ( X (,) Y ) -cn-> CC ) ) | 
						
							| 7 |  | itgparts.d |  |-  ( ph -> ( x e. ( X (,) Y ) |-> D ) e. ( ( X (,) Y ) -cn-> CC ) ) | 
						
							| 8 |  | itgparts.ad |  |-  ( ph -> ( x e. ( X (,) Y ) |-> ( A x. D ) ) e. L^1 ) | 
						
							| 9 |  | itgparts.bc |  |-  ( ph -> ( x e. ( X (,) Y ) |-> ( B x. C ) ) e. L^1 ) | 
						
							| 10 |  | itgparts.da |  |-  ( ph -> ( RR _D ( x e. ( X [,] Y ) |-> A ) ) = ( x e. ( X (,) Y ) |-> B ) ) | 
						
							| 11 |  | itgparts.dc |  |-  ( ph -> ( RR _D ( x e. ( X [,] Y ) |-> C ) ) = ( x e. ( X (,) Y ) |-> D ) ) | 
						
							| 12 |  | itgparts.e |  |-  ( ( ph /\ x = X ) -> ( A x. C ) = E ) | 
						
							| 13 |  | itgparts.f |  |-  ( ( ph /\ x = Y ) -> ( A x. C ) = F ) | 
						
							| 14 |  | cncff |  |-  ( ( x e. ( X (,) Y ) |-> B ) e. ( ( X (,) Y ) -cn-> CC ) -> ( x e. ( X (,) Y ) |-> B ) : ( X (,) Y ) --> CC ) | 
						
							| 15 | 6 14 | syl |  |-  ( ph -> ( x e. ( X (,) Y ) |-> B ) : ( X (,) Y ) --> CC ) | 
						
							| 16 | 15 | fvmptelcdm |  |-  ( ( ph /\ x e. ( X (,) Y ) ) -> B e. CC ) | 
						
							| 17 |  | ioossicc |  |-  ( X (,) Y ) C_ ( X [,] Y ) | 
						
							| 18 | 17 | sseli |  |-  ( x e. ( X (,) Y ) -> x e. ( X [,] Y ) ) | 
						
							| 19 |  | cncff |  |-  ( ( x e. ( X [,] Y ) |-> C ) e. ( ( X [,] Y ) -cn-> CC ) -> ( x e. ( X [,] Y ) |-> C ) : ( X [,] Y ) --> CC ) | 
						
							| 20 | 5 19 | syl |  |-  ( ph -> ( x e. ( X [,] Y ) |-> C ) : ( X [,] Y ) --> CC ) | 
						
							| 21 | 20 | fvmptelcdm |  |-  ( ( ph /\ x e. ( X [,] Y ) ) -> C e. CC ) | 
						
							| 22 | 18 21 | sylan2 |  |-  ( ( ph /\ x e. ( X (,) Y ) ) -> C e. CC ) | 
						
							| 23 | 16 22 | mulcld |  |-  ( ( ph /\ x e. ( X (,) Y ) ) -> ( B x. C ) e. CC ) | 
						
							| 24 | 23 9 | itgcl |  |-  ( ph -> S. ( X (,) Y ) ( B x. C ) _d x e. CC ) | 
						
							| 25 |  | cncff |  |-  ( ( x e. ( X [,] Y ) |-> A ) e. ( ( X [,] Y ) -cn-> CC ) -> ( x e. ( X [,] Y ) |-> A ) : ( X [,] Y ) --> CC ) | 
						
							| 26 | 4 25 | syl |  |-  ( ph -> ( x e. ( X [,] Y ) |-> A ) : ( X [,] Y ) --> CC ) | 
						
							| 27 | 26 | fvmptelcdm |  |-  ( ( ph /\ x e. ( X [,] Y ) ) -> A e. CC ) | 
						
							| 28 | 18 27 | sylan2 |  |-  ( ( ph /\ x e. ( X (,) Y ) ) -> A e. CC ) | 
						
							| 29 |  | cncff |  |-  ( ( x e. ( X (,) Y ) |-> D ) e. ( ( X (,) Y ) -cn-> CC ) -> ( x e. ( X (,) Y ) |-> D ) : ( X (,) Y ) --> CC ) | 
						
							| 30 | 7 29 | syl |  |-  ( ph -> ( x e. ( X (,) Y ) |-> D ) : ( X (,) Y ) --> CC ) | 
						
							| 31 | 30 | fvmptelcdm |  |-  ( ( ph /\ x e. ( X (,) Y ) ) -> D e. CC ) | 
						
							| 32 | 28 31 | mulcld |  |-  ( ( ph /\ x e. ( X (,) Y ) ) -> ( A x. D ) e. CC ) | 
						
							| 33 | 32 8 | itgcl |  |-  ( ph -> S. ( X (,) Y ) ( A x. D ) _d x e. CC ) | 
						
							| 34 | 24 33 | pncan2d |  |-  ( ph -> ( ( S. ( X (,) Y ) ( B x. C ) _d x + S. ( X (,) Y ) ( A x. D ) _d x ) - S. ( X (,) Y ) ( B x. C ) _d x ) = S. ( X (,) Y ) ( A x. D ) _d x ) | 
						
							| 35 | 23 9 32 8 | itgadd |  |-  ( ph -> S. ( X (,) Y ) ( ( B x. C ) + ( A x. D ) ) _d x = ( S. ( X (,) Y ) ( B x. C ) _d x + S. ( X (,) Y ) ( A x. D ) _d x ) ) | 
						
							| 36 |  | fveq2 |  |-  ( x = t -> ( ( RR _D ( x e. ( X [,] Y ) |-> ( A x. C ) ) ) ` x ) = ( ( RR _D ( x e. ( X [,] Y ) |-> ( A x. C ) ) ) ` t ) ) | 
						
							| 37 |  | nfcv |  |-  F/_ t ( ( RR _D ( x e. ( X [,] Y ) |-> ( A x. C ) ) ) ` x ) | 
						
							| 38 |  | nfcv |  |-  F/_ x RR | 
						
							| 39 |  | nfcv |  |-  F/_ x _D | 
						
							| 40 |  | nfmpt1 |  |-  F/_ x ( x e. ( X [,] Y ) |-> ( A x. C ) ) | 
						
							| 41 | 38 39 40 | nfov |  |-  F/_ x ( RR _D ( x e. ( X [,] Y ) |-> ( A x. C ) ) ) | 
						
							| 42 |  | nfcv |  |-  F/_ x t | 
						
							| 43 | 41 42 | nffv |  |-  F/_ x ( ( RR _D ( x e. ( X [,] Y ) |-> ( A x. C ) ) ) ` t ) | 
						
							| 44 | 36 37 43 | cbvitg |  |-  S. ( X (,) Y ) ( ( RR _D ( x e. ( X [,] Y ) |-> ( A x. C ) ) ) ` x ) _d x = S. ( X (,) Y ) ( ( RR _D ( x e. ( X [,] Y ) |-> ( A x. C ) ) ) ` t ) _d t | 
						
							| 45 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 46 | 45 | a1i |  |-  ( ph -> RR C_ CC ) | 
						
							| 47 |  | iccssre |  |-  ( ( X e. RR /\ Y e. RR ) -> ( X [,] Y ) C_ RR ) | 
						
							| 48 | 1 2 47 | syl2anc |  |-  ( ph -> ( X [,] Y ) C_ RR ) | 
						
							| 49 | 27 21 | mulcld |  |-  ( ( ph /\ x e. ( X [,] Y ) ) -> ( A x. C ) e. CC ) | 
						
							| 50 |  | tgioo4 |  |-  ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) | 
						
							| 51 |  | eqid |  |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) | 
						
							| 52 |  | iccntr |  |-  ( ( X e. RR /\ Y e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( X [,] Y ) ) = ( X (,) Y ) ) | 
						
							| 53 | 1 2 52 | syl2anc |  |-  ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` ( X [,] Y ) ) = ( X (,) Y ) ) | 
						
							| 54 | 46 48 49 50 51 53 | dvmptntr |  |-  ( ph -> ( RR _D ( x e. ( X [,] Y ) |-> ( A x. C ) ) ) = ( RR _D ( x e. ( X (,) Y ) |-> ( A x. C ) ) ) ) | 
						
							| 55 |  | reelprrecn |  |-  RR e. { RR , CC } | 
						
							| 56 | 55 | a1i |  |-  ( ph -> RR e. { RR , CC } ) | 
						
							| 57 | 46 48 27 50 51 53 | dvmptntr |  |-  ( ph -> ( RR _D ( x e. ( X [,] Y ) |-> A ) ) = ( RR _D ( x e. ( X (,) Y ) |-> A ) ) ) | 
						
							| 58 | 57 10 | eqtr3d |  |-  ( ph -> ( RR _D ( x e. ( X (,) Y ) |-> A ) ) = ( x e. ( X (,) Y ) |-> B ) ) | 
						
							| 59 | 46 48 21 50 51 53 | dvmptntr |  |-  ( ph -> ( RR _D ( x e. ( X [,] Y ) |-> C ) ) = ( RR _D ( x e. ( X (,) Y ) |-> C ) ) ) | 
						
							| 60 | 59 11 | eqtr3d |  |-  ( ph -> ( RR _D ( x e. ( X (,) Y ) |-> C ) ) = ( x e. ( X (,) Y ) |-> D ) ) | 
						
							| 61 | 56 28 16 58 22 31 60 | dvmptmul |  |-  ( ph -> ( RR _D ( x e. ( X (,) Y ) |-> ( A x. C ) ) ) = ( x e. ( X (,) Y ) |-> ( ( B x. C ) + ( D x. A ) ) ) ) | 
						
							| 62 | 31 28 | mulcomd |  |-  ( ( ph /\ x e. ( X (,) Y ) ) -> ( D x. A ) = ( A x. D ) ) | 
						
							| 63 | 62 | oveq2d |  |-  ( ( ph /\ x e. ( X (,) Y ) ) -> ( ( B x. C ) + ( D x. A ) ) = ( ( B x. C ) + ( A x. D ) ) ) | 
						
							| 64 | 63 | mpteq2dva |  |-  ( ph -> ( x e. ( X (,) Y ) |-> ( ( B x. C ) + ( D x. A ) ) ) = ( x e. ( X (,) Y ) |-> ( ( B x. C ) + ( A x. D ) ) ) ) | 
						
							| 65 | 54 61 64 | 3eqtrd |  |-  ( ph -> ( RR _D ( x e. ( X [,] Y ) |-> ( A x. C ) ) ) = ( x e. ( X (,) Y ) |-> ( ( B x. C ) + ( A x. D ) ) ) ) | 
						
							| 66 | 51 | addcn |  |-  + e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) | 
						
							| 67 | 66 | a1i |  |-  ( ph -> + e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 68 |  | resmpt |  |-  ( ( X (,) Y ) C_ ( X [,] Y ) -> ( ( x e. ( X [,] Y ) |-> C ) |` ( X (,) Y ) ) = ( x e. ( X (,) Y ) |-> C ) ) | 
						
							| 69 | 17 68 | ax-mp |  |-  ( ( x e. ( X [,] Y ) |-> C ) |` ( X (,) Y ) ) = ( x e. ( X (,) Y ) |-> C ) | 
						
							| 70 |  | rescncf |  |-  ( ( X (,) Y ) C_ ( X [,] Y ) -> ( ( x e. ( X [,] Y ) |-> C ) e. ( ( X [,] Y ) -cn-> CC ) -> ( ( x e. ( X [,] Y ) |-> C ) |` ( X (,) Y ) ) e. ( ( X (,) Y ) -cn-> CC ) ) ) | 
						
							| 71 | 17 5 70 | mpsyl |  |-  ( ph -> ( ( x e. ( X [,] Y ) |-> C ) |` ( X (,) Y ) ) e. ( ( X (,) Y ) -cn-> CC ) ) | 
						
							| 72 | 69 71 | eqeltrrid |  |-  ( ph -> ( x e. ( X (,) Y ) |-> C ) e. ( ( X (,) Y ) -cn-> CC ) ) | 
						
							| 73 | 6 72 | mulcncf |  |-  ( ph -> ( x e. ( X (,) Y ) |-> ( B x. C ) ) e. ( ( X (,) Y ) -cn-> CC ) ) | 
						
							| 74 |  | resmpt |  |-  ( ( X (,) Y ) C_ ( X [,] Y ) -> ( ( x e. ( X [,] Y ) |-> A ) |` ( X (,) Y ) ) = ( x e. ( X (,) Y ) |-> A ) ) | 
						
							| 75 | 17 74 | ax-mp |  |-  ( ( x e. ( X [,] Y ) |-> A ) |` ( X (,) Y ) ) = ( x e. ( X (,) Y ) |-> A ) | 
						
							| 76 |  | rescncf |  |-  ( ( X (,) Y ) C_ ( X [,] Y ) -> ( ( x e. ( X [,] Y ) |-> A ) e. ( ( X [,] Y ) -cn-> CC ) -> ( ( x e. ( X [,] Y ) |-> A ) |` ( X (,) Y ) ) e. ( ( X (,) Y ) -cn-> CC ) ) ) | 
						
							| 77 | 17 4 76 | mpsyl |  |-  ( ph -> ( ( x e. ( X [,] Y ) |-> A ) |` ( X (,) Y ) ) e. ( ( X (,) Y ) -cn-> CC ) ) | 
						
							| 78 | 75 77 | eqeltrrid |  |-  ( ph -> ( x e. ( X (,) Y ) |-> A ) e. ( ( X (,) Y ) -cn-> CC ) ) | 
						
							| 79 | 78 7 | mulcncf |  |-  ( ph -> ( x e. ( X (,) Y ) |-> ( A x. D ) ) e. ( ( X (,) Y ) -cn-> CC ) ) | 
						
							| 80 | 51 67 73 79 | cncfmpt2f |  |-  ( ph -> ( x e. ( X (,) Y ) |-> ( ( B x. C ) + ( A x. D ) ) ) e. ( ( X (,) Y ) -cn-> CC ) ) | 
						
							| 81 | 65 80 | eqeltrd |  |-  ( ph -> ( RR _D ( x e. ( X [,] Y ) |-> ( A x. C ) ) ) e. ( ( X (,) Y ) -cn-> CC ) ) | 
						
							| 82 | 23 9 32 8 | ibladd |  |-  ( ph -> ( x e. ( X (,) Y ) |-> ( ( B x. C ) + ( A x. D ) ) ) e. L^1 ) | 
						
							| 83 | 65 82 | eqeltrd |  |-  ( ph -> ( RR _D ( x e. ( X [,] Y ) |-> ( A x. C ) ) ) e. L^1 ) | 
						
							| 84 | 4 5 | mulcncf |  |-  ( ph -> ( x e. ( X [,] Y ) |-> ( A x. C ) ) e. ( ( X [,] Y ) -cn-> CC ) ) | 
						
							| 85 | 1 2 3 81 83 84 | ftc2 |  |-  ( ph -> S. ( X (,) Y ) ( ( RR _D ( x e. ( X [,] Y ) |-> ( A x. C ) ) ) ` t ) _d t = ( ( ( x e. ( X [,] Y ) |-> ( A x. C ) ) ` Y ) - ( ( x e. ( X [,] Y ) |-> ( A x. C ) ) ` X ) ) ) | 
						
							| 86 | 44 85 | eqtrid |  |-  ( ph -> S. ( X (,) Y ) ( ( RR _D ( x e. ( X [,] Y ) |-> ( A x. C ) ) ) ` x ) _d x = ( ( ( x e. ( X [,] Y ) |-> ( A x. C ) ) ` Y ) - ( ( x e. ( X [,] Y ) |-> ( A x. C ) ) ` X ) ) ) | 
						
							| 87 | 65 | fveq1d |  |-  ( ph -> ( ( RR _D ( x e. ( X [,] Y ) |-> ( A x. C ) ) ) ` x ) = ( ( x e. ( X (,) Y ) |-> ( ( B x. C ) + ( A x. D ) ) ) ` x ) ) | 
						
							| 88 | 87 | adantr |  |-  ( ( ph /\ x e. ( X (,) Y ) ) -> ( ( RR _D ( x e. ( X [,] Y ) |-> ( A x. C ) ) ) ` x ) = ( ( x e. ( X (,) Y ) |-> ( ( B x. C ) + ( A x. D ) ) ) ` x ) ) | 
						
							| 89 |  | simpr |  |-  ( ( ph /\ x e. ( X (,) Y ) ) -> x e. ( X (,) Y ) ) | 
						
							| 90 |  | ovex |  |-  ( ( B x. C ) + ( A x. D ) ) e. _V | 
						
							| 91 |  | eqid |  |-  ( x e. ( X (,) Y ) |-> ( ( B x. C ) + ( A x. D ) ) ) = ( x e. ( X (,) Y ) |-> ( ( B x. C ) + ( A x. D ) ) ) | 
						
							| 92 | 91 | fvmpt2 |  |-  ( ( x e. ( X (,) Y ) /\ ( ( B x. C ) + ( A x. D ) ) e. _V ) -> ( ( x e. ( X (,) Y ) |-> ( ( B x. C ) + ( A x. D ) ) ) ` x ) = ( ( B x. C ) + ( A x. D ) ) ) | 
						
							| 93 | 89 90 92 | sylancl |  |-  ( ( ph /\ x e. ( X (,) Y ) ) -> ( ( x e. ( X (,) Y ) |-> ( ( B x. C ) + ( A x. D ) ) ) ` x ) = ( ( B x. C ) + ( A x. D ) ) ) | 
						
							| 94 | 88 93 | eqtrd |  |-  ( ( ph /\ x e. ( X (,) Y ) ) -> ( ( RR _D ( x e. ( X [,] Y ) |-> ( A x. C ) ) ) ` x ) = ( ( B x. C ) + ( A x. D ) ) ) | 
						
							| 95 | 94 | itgeq2dv |  |-  ( ph -> S. ( X (,) Y ) ( ( RR _D ( x e. ( X [,] Y ) |-> ( A x. C ) ) ) ` x ) _d x = S. ( X (,) Y ) ( ( B x. C ) + ( A x. D ) ) _d x ) | 
						
							| 96 | 1 | rexrd |  |-  ( ph -> X e. RR* ) | 
						
							| 97 | 2 | rexrd |  |-  ( ph -> Y e. RR* ) | 
						
							| 98 |  | ubicc2 |  |-  ( ( X e. RR* /\ Y e. RR* /\ X <_ Y ) -> Y e. ( X [,] Y ) ) | 
						
							| 99 | 96 97 3 98 | syl3anc |  |-  ( ph -> Y e. ( X [,] Y ) ) | 
						
							| 100 |  | ovex |  |-  ( A x. C ) e. _V | 
						
							| 101 | 100 | csbex |  |-  [_ Y / x ]_ ( A x. C ) e. _V | 
						
							| 102 |  | eqid |  |-  ( x e. ( X [,] Y ) |-> ( A x. C ) ) = ( x e. ( X [,] Y ) |-> ( A x. C ) ) | 
						
							| 103 | 102 | fvmpts |  |-  ( ( Y e. ( X [,] Y ) /\ [_ Y / x ]_ ( A x. C ) e. _V ) -> ( ( x e. ( X [,] Y ) |-> ( A x. C ) ) ` Y ) = [_ Y / x ]_ ( A x. C ) ) | 
						
							| 104 | 99 101 103 | sylancl |  |-  ( ph -> ( ( x e. ( X [,] Y ) |-> ( A x. C ) ) ` Y ) = [_ Y / x ]_ ( A x. C ) ) | 
						
							| 105 | 2 13 | csbied |  |-  ( ph -> [_ Y / x ]_ ( A x. C ) = F ) | 
						
							| 106 | 104 105 | eqtrd |  |-  ( ph -> ( ( x e. ( X [,] Y ) |-> ( A x. C ) ) ` Y ) = F ) | 
						
							| 107 |  | lbicc2 |  |-  ( ( X e. RR* /\ Y e. RR* /\ X <_ Y ) -> X e. ( X [,] Y ) ) | 
						
							| 108 | 96 97 3 107 | syl3anc |  |-  ( ph -> X e. ( X [,] Y ) ) | 
						
							| 109 | 100 | csbex |  |-  [_ X / x ]_ ( A x. C ) e. _V | 
						
							| 110 | 102 | fvmpts |  |-  ( ( X e. ( X [,] Y ) /\ [_ X / x ]_ ( A x. C ) e. _V ) -> ( ( x e. ( X [,] Y ) |-> ( A x. C ) ) ` X ) = [_ X / x ]_ ( A x. C ) ) | 
						
							| 111 | 108 109 110 | sylancl |  |-  ( ph -> ( ( x e. ( X [,] Y ) |-> ( A x. C ) ) ` X ) = [_ X / x ]_ ( A x. C ) ) | 
						
							| 112 | 1 12 | csbied |  |-  ( ph -> [_ X / x ]_ ( A x. C ) = E ) | 
						
							| 113 | 111 112 | eqtrd |  |-  ( ph -> ( ( x e. ( X [,] Y ) |-> ( A x. C ) ) ` X ) = E ) | 
						
							| 114 | 106 113 | oveq12d |  |-  ( ph -> ( ( ( x e. ( X [,] Y ) |-> ( A x. C ) ) ` Y ) - ( ( x e. ( X [,] Y ) |-> ( A x. C ) ) ` X ) ) = ( F - E ) ) | 
						
							| 115 | 86 95 114 | 3eqtr3d |  |-  ( ph -> S. ( X (,) Y ) ( ( B x. C ) + ( A x. D ) ) _d x = ( F - E ) ) | 
						
							| 116 | 35 115 | eqtr3d |  |-  ( ph -> ( S. ( X (,) Y ) ( B x. C ) _d x + S. ( X (,) Y ) ( A x. D ) _d x ) = ( F - E ) ) | 
						
							| 117 | 116 | oveq1d |  |-  ( ph -> ( ( S. ( X (,) Y ) ( B x. C ) _d x + S. ( X (,) Y ) ( A x. D ) _d x ) - S. ( X (,) Y ) ( B x. C ) _d x ) = ( ( F - E ) - S. ( X (,) Y ) ( B x. C ) _d x ) ) | 
						
							| 118 | 34 117 | eqtr3d |  |-  ( ph -> S. ( X (,) Y ) ( A x. D ) _d x = ( ( F - E ) - S. ( X (,) Y ) ( B x. C ) _d x ) ) |