Step |
Hyp |
Ref |
Expression |
1 |
|
itgpowd.1 |
|- ( ph -> A e. RR ) |
2 |
|
itgpowd.2 |
|- ( ph -> B e. RR ) |
3 |
|
itgpowd.3 |
|- ( ph -> A <_ B ) |
4 |
|
itgpowd.4 |
|- ( ph -> N e. NN0 ) |
5 |
|
nn0p1nn |
|- ( N e. NN0 -> ( N + 1 ) e. NN ) |
6 |
4 5
|
syl |
|- ( ph -> ( N + 1 ) e. NN ) |
7 |
6
|
nncnd |
|- ( ph -> ( N + 1 ) e. CC ) |
8 |
|
iccssre |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
9 |
1 2 8
|
syl2anc |
|- ( ph -> ( A [,] B ) C_ RR ) |
10 |
|
ax-resscn |
|- RR C_ CC |
11 |
9 10
|
sstrdi |
|- ( ph -> ( A [,] B ) C_ CC ) |
12 |
11
|
sselda |
|- ( ( ph /\ x e. ( A [,] B ) ) -> x e. CC ) |
13 |
4
|
adantr |
|- ( ( ph /\ x e. ( A [,] B ) ) -> N e. NN0 ) |
14 |
12 13
|
expcld |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( x ^ N ) e. CC ) |
15 |
11
|
resmptd |
|- ( ph -> ( ( x e. CC |-> ( x ^ N ) ) |` ( A [,] B ) ) = ( x e. ( A [,] B ) |-> ( x ^ N ) ) ) |
16 |
|
expcncf |
|- ( N e. NN0 -> ( x e. CC |-> ( x ^ N ) ) e. ( CC -cn-> CC ) ) |
17 |
4 16
|
syl |
|- ( ph -> ( x e. CC |-> ( x ^ N ) ) e. ( CC -cn-> CC ) ) |
18 |
|
rescncf |
|- ( ( A [,] B ) C_ CC -> ( ( x e. CC |-> ( x ^ N ) ) e. ( CC -cn-> CC ) -> ( ( x e. CC |-> ( x ^ N ) ) |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) ) ) |
19 |
11 17 18
|
sylc |
|- ( ph -> ( ( x e. CC |-> ( x ^ N ) ) |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
20 |
15 19
|
eqeltrrd |
|- ( ph -> ( x e. ( A [,] B ) |-> ( x ^ N ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
21 |
|
cnicciblnc |
|- ( ( A e. RR /\ B e. RR /\ ( x e. ( A [,] B ) |-> ( x ^ N ) ) e. ( ( A [,] B ) -cn-> CC ) ) -> ( x e. ( A [,] B ) |-> ( x ^ N ) ) e. L^1 ) |
22 |
1 2 20 21
|
syl3anc |
|- ( ph -> ( x e. ( A [,] B ) |-> ( x ^ N ) ) e. L^1 ) |
23 |
14 22
|
itgcl |
|- ( ph -> S. ( A [,] B ) ( x ^ N ) _d x e. CC ) |
24 |
6
|
nnne0d |
|- ( ph -> ( N + 1 ) =/= 0 ) |
25 |
7 14 22
|
itgmulc2 |
|- ( ph -> ( ( N + 1 ) x. S. ( A [,] B ) ( x ^ N ) _d x ) = S. ( A [,] B ) ( ( N + 1 ) x. ( x ^ N ) ) _d x ) |
26 |
|
eqidd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( t e. ( A (,) B ) |-> ( ( N + 1 ) x. ( t ^ N ) ) ) = ( t e. ( A (,) B ) |-> ( ( N + 1 ) x. ( t ^ N ) ) ) ) |
27 |
|
oveq1 |
|- ( t = x -> ( t ^ N ) = ( x ^ N ) ) |
28 |
27
|
oveq2d |
|- ( t = x -> ( ( N + 1 ) x. ( t ^ N ) ) = ( ( N + 1 ) x. ( x ^ N ) ) ) |
29 |
28
|
adantl |
|- ( ( ( ph /\ x e. ( A (,) B ) ) /\ t = x ) -> ( ( N + 1 ) x. ( t ^ N ) ) = ( ( N + 1 ) x. ( x ^ N ) ) ) |
30 |
|
simpr |
|- ( ( ph /\ x e. ( A (,) B ) ) -> x e. ( A (,) B ) ) |
31 |
7
|
adantr |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( N + 1 ) e. CC ) |
32 |
|
ioossicc |
|- ( A (,) B ) C_ ( A [,] B ) |
33 |
32
|
a1i |
|- ( ph -> ( A (,) B ) C_ ( A [,] B ) ) |
34 |
33
|
sselda |
|- ( ( ph /\ x e. ( A (,) B ) ) -> x e. ( A [,] B ) ) |
35 |
34 14
|
syldan |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( x ^ N ) e. CC ) |
36 |
31 35
|
mulcld |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( N + 1 ) x. ( x ^ N ) ) e. CC ) |
37 |
26 29 30 36
|
fvmptd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( t e. ( A (,) B ) |-> ( ( N + 1 ) x. ( t ^ N ) ) ) ` x ) = ( ( N + 1 ) x. ( x ^ N ) ) ) |
38 |
37
|
itgeq2dv |
|- ( ph -> S. ( A (,) B ) ( ( t e. ( A (,) B ) |-> ( ( N + 1 ) x. ( t ^ N ) ) ) ` x ) _d x = S. ( A (,) B ) ( ( N + 1 ) x. ( x ^ N ) ) _d x ) |
39 |
|
reelprrecn |
|- RR e. { RR , CC } |
40 |
39
|
a1i |
|- ( ph -> RR e. { RR , CC } ) |
41 |
10
|
a1i |
|- ( ph -> RR C_ CC ) |
42 |
41
|
sselda |
|- ( ( ph /\ t e. RR ) -> t e. CC ) |
43 |
|
1nn0 |
|- 1 e. NN0 |
44 |
43
|
a1i |
|- ( ph -> 1 e. NN0 ) |
45 |
4 44
|
nn0addcld |
|- ( ph -> ( N + 1 ) e. NN0 ) |
46 |
45
|
adantr |
|- ( ( ph /\ t e. RR ) -> ( N + 1 ) e. NN0 ) |
47 |
42 46
|
expcld |
|- ( ( ph /\ t e. RR ) -> ( t ^ ( N + 1 ) ) e. CC ) |
48 |
4
|
nn0cnd |
|- ( ph -> N e. CC ) |
49 |
48
|
adantr |
|- ( ( ph /\ t e. RR ) -> N e. CC ) |
50 |
|
1cnd |
|- ( ( ph /\ t e. RR ) -> 1 e. CC ) |
51 |
49 50
|
addcld |
|- ( ( ph /\ t e. RR ) -> ( N + 1 ) e. CC ) |
52 |
4
|
adantr |
|- ( ( ph /\ t e. RR ) -> N e. NN0 ) |
53 |
42 52
|
expcld |
|- ( ( ph /\ t e. RR ) -> ( t ^ N ) e. CC ) |
54 |
51 53
|
mulcld |
|- ( ( ph /\ t e. RR ) -> ( ( N + 1 ) x. ( t ^ N ) ) e. CC ) |
55 |
|
simpr |
|- ( ( ph /\ t e. CC ) -> t e. CC ) |
56 |
45
|
adantr |
|- ( ( ph /\ t e. CC ) -> ( N + 1 ) e. NN0 ) |
57 |
55 56
|
expcld |
|- ( ( ph /\ t e. CC ) -> ( t ^ ( N + 1 ) ) e. CC ) |
58 |
57
|
fmpttd |
|- ( ph -> ( t e. CC |-> ( t ^ ( N + 1 ) ) ) : CC --> CC ) |
59 |
|
ssidd |
|- ( ph -> CC C_ CC ) |
60 |
7
|
adantr |
|- ( ( ph /\ t e. CC ) -> ( N + 1 ) e. CC ) |
61 |
4
|
adantr |
|- ( ( ph /\ t e. CC ) -> N e. NN0 ) |
62 |
55 61
|
expcld |
|- ( ( ph /\ t e. CC ) -> ( t ^ N ) e. CC ) |
63 |
60 62
|
mulcld |
|- ( ( ph /\ t e. CC ) -> ( ( N + 1 ) x. ( t ^ N ) ) e. CC ) |
64 |
63
|
fmpttd |
|- ( ph -> ( t e. CC |-> ( ( N + 1 ) x. ( t ^ N ) ) ) : CC --> CC ) |
65 |
|
dvexp |
|- ( ( N + 1 ) e. NN -> ( CC _D ( t e. CC |-> ( t ^ ( N + 1 ) ) ) ) = ( t e. CC |-> ( ( N + 1 ) x. ( t ^ ( ( N + 1 ) - 1 ) ) ) ) ) |
66 |
6 65
|
syl |
|- ( ph -> ( CC _D ( t e. CC |-> ( t ^ ( N + 1 ) ) ) ) = ( t e. CC |-> ( ( N + 1 ) x. ( t ^ ( ( N + 1 ) - 1 ) ) ) ) ) |
67 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
68 |
48 67
|
pncand |
|- ( ph -> ( ( N + 1 ) - 1 ) = N ) |
69 |
68
|
oveq2d |
|- ( ph -> ( t ^ ( ( N + 1 ) - 1 ) ) = ( t ^ N ) ) |
70 |
69
|
oveq2d |
|- ( ph -> ( ( N + 1 ) x. ( t ^ ( ( N + 1 ) - 1 ) ) ) = ( ( N + 1 ) x. ( t ^ N ) ) ) |
71 |
70
|
mpteq2dv |
|- ( ph -> ( t e. CC |-> ( ( N + 1 ) x. ( t ^ ( ( N + 1 ) - 1 ) ) ) ) = ( t e. CC |-> ( ( N + 1 ) x. ( t ^ N ) ) ) ) |
72 |
66 71
|
eqtrd |
|- ( ph -> ( CC _D ( t e. CC |-> ( t ^ ( N + 1 ) ) ) ) = ( t e. CC |-> ( ( N + 1 ) x. ( t ^ N ) ) ) ) |
73 |
72
|
feq1d |
|- ( ph -> ( ( CC _D ( t e. CC |-> ( t ^ ( N + 1 ) ) ) ) : CC --> CC <-> ( t e. CC |-> ( ( N + 1 ) x. ( t ^ N ) ) ) : CC --> CC ) ) |
74 |
64 73
|
mpbird |
|- ( ph -> ( CC _D ( t e. CC |-> ( t ^ ( N + 1 ) ) ) ) : CC --> CC ) |
75 |
74
|
fdmd |
|- ( ph -> dom ( CC _D ( t e. CC |-> ( t ^ ( N + 1 ) ) ) ) = CC ) |
76 |
10 75
|
sseqtrrid |
|- ( ph -> RR C_ dom ( CC _D ( t e. CC |-> ( t ^ ( N + 1 ) ) ) ) ) |
77 |
|
dvres3 |
|- ( ( ( RR e. { RR , CC } /\ ( t e. CC |-> ( t ^ ( N + 1 ) ) ) : CC --> CC ) /\ ( CC C_ CC /\ RR C_ dom ( CC _D ( t e. CC |-> ( t ^ ( N + 1 ) ) ) ) ) ) -> ( RR _D ( ( t e. CC |-> ( t ^ ( N + 1 ) ) ) |` RR ) ) = ( ( CC _D ( t e. CC |-> ( t ^ ( N + 1 ) ) ) ) |` RR ) ) |
78 |
40 58 59 76 77
|
syl22anc |
|- ( ph -> ( RR _D ( ( t e. CC |-> ( t ^ ( N + 1 ) ) ) |` RR ) ) = ( ( CC _D ( t e. CC |-> ( t ^ ( N + 1 ) ) ) ) |` RR ) ) |
79 |
72
|
reseq1d |
|- ( ph -> ( ( CC _D ( t e. CC |-> ( t ^ ( N + 1 ) ) ) ) |` RR ) = ( ( t e. CC |-> ( ( N + 1 ) x. ( t ^ N ) ) ) |` RR ) ) |
80 |
78 79
|
eqtrd |
|- ( ph -> ( RR _D ( ( t e. CC |-> ( t ^ ( N + 1 ) ) ) |` RR ) ) = ( ( t e. CC |-> ( ( N + 1 ) x. ( t ^ N ) ) ) |` RR ) ) |
81 |
|
resmpt |
|- ( RR C_ CC -> ( ( t e. CC |-> ( t ^ ( N + 1 ) ) ) |` RR ) = ( t e. RR |-> ( t ^ ( N + 1 ) ) ) ) |
82 |
10 81
|
mp1i |
|- ( ph -> ( ( t e. CC |-> ( t ^ ( N + 1 ) ) ) |` RR ) = ( t e. RR |-> ( t ^ ( N + 1 ) ) ) ) |
83 |
82
|
oveq2d |
|- ( ph -> ( RR _D ( ( t e. CC |-> ( t ^ ( N + 1 ) ) ) |` RR ) ) = ( RR _D ( t e. RR |-> ( t ^ ( N + 1 ) ) ) ) ) |
84 |
|
resmpt |
|- ( RR C_ CC -> ( ( t e. CC |-> ( ( N + 1 ) x. ( t ^ N ) ) ) |` RR ) = ( t e. RR |-> ( ( N + 1 ) x. ( t ^ N ) ) ) ) |
85 |
10 84
|
mp1i |
|- ( ph -> ( ( t e. CC |-> ( ( N + 1 ) x. ( t ^ N ) ) ) |` RR ) = ( t e. RR |-> ( ( N + 1 ) x. ( t ^ N ) ) ) ) |
86 |
80 83 85
|
3eqtr3d |
|- ( ph -> ( RR _D ( t e. RR |-> ( t ^ ( N + 1 ) ) ) ) = ( t e. RR |-> ( ( N + 1 ) x. ( t ^ N ) ) ) ) |
87 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
88 |
87
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
89 |
|
iccntr |
|- ( ( A e. RR /\ B e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) |
90 |
1 2 89
|
syl2anc |
|- ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) |
91 |
40 47 54 86 9 88 87 90
|
dvmptres2 |
|- ( ph -> ( RR _D ( t e. ( A [,] B ) |-> ( t ^ ( N + 1 ) ) ) ) = ( t e. ( A (,) B ) |-> ( ( N + 1 ) x. ( t ^ N ) ) ) ) |
92 |
|
ioossre |
|- ( A (,) B ) C_ RR |
93 |
92 10
|
sstri |
|- ( A (,) B ) C_ CC |
94 |
93
|
a1i |
|- ( ph -> ( A (,) B ) C_ CC ) |
95 |
|
cncfmptc |
|- ( ( ( N + 1 ) e. CC /\ ( A (,) B ) C_ CC /\ CC C_ CC ) -> ( t e. ( A (,) B ) |-> ( N + 1 ) ) e. ( ( A (,) B ) -cn-> CC ) ) |
96 |
7 94 59 95
|
syl3anc |
|- ( ph -> ( t e. ( A (,) B ) |-> ( N + 1 ) ) e. ( ( A (,) B ) -cn-> CC ) ) |
97 |
|
resmpt |
|- ( ( A (,) B ) C_ CC -> ( ( t e. CC |-> ( t ^ N ) ) |` ( A (,) B ) ) = ( t e. ( A (,) B ) |-> ( t ^ N ) ) ) |
98 |
93 97
|
mp1i |
|- ( ph -> ( ( t e. CC |-> ( t ^ N ) ) |` ( A (,) B ) ) = ( t e. ( A (,) B ) |-> ( t ^ N ) ) ) |
99 |
|
expcncf |
|- ( N e. NN0 -> ( t e. CC |-> ( t ^ N ) ) e. ( CC -cn-> CC ) ) |
100 |
4 99
|
syl |
|- ( ph -> ( t e. CC |-> ( t ^ N ) ) e. ( CC -cn-> CC ) ) |
101 |
|
rescncf |
|- ( ( A (,) B ) C_ CC -> ( ( t e. CC |-> ( t ^ N ) ) e. ( CC -cn-> CC ) -> ( ( t e. CC |-> ( t ^ N ) ) |` ( A (,) B ) ) e. ( ( A (,) B ) -cn-> CC ) ) ) |
102 |
94 100 101
|
sylc |
|- ( ph -> ( ( t e. CC |-> ( t ^ N ) ) |` ( A (,) B ) ) e. ( ( A (,) B ) -cn-> CC ) ) |
103 |
98 102
|
eqeltrrd |
|- ( ph -> ( t e. ( A (,) B ) |-> ( t ^ N ) ) e. ( ( A (,) B ) -cn-> CC ) ) |
104 |
96 103
|
mulcncf |
|- ( ph -> ( t e. ( A (,) B ) |-> ( ( N + 1 ) x. ( t ^ N ) ) ) e. ( ( A (,) B ) -cn-> CC ) ) |
105 |
91 104
|
eqeltrd |
|- ( ph -> ( RR _D ( t e. ( A [,] B ) |-> ( t ^ ( N + 1 ) ) ) ) e. ( ( A (,) B ) -cn-> CC ) ) |
106 |
|
ioombl |
|- ( A (,) B ) e. dom vol |
107 |
106
|
a1i |
|- ( ph -> ( A (,) B ) e. dom vol ) |
108 |
48
|
adantr |
|- ( ( ph /\ t e. ( A [,] B ) ) -> N e. CC ) |
109 |
|
1cnd |
|- ( ( ph /\ t e. ( A [,] B ) ) -> 1 e. CC ) |
110 |
108 109
|
addcld |
|- ( ( ph /\ t e. ( A [,] B ) ) -> ( N + 1 ) e. CC ) |
111 |
11
|
sselda |
|- ( ( ph /\ t e. ( A [,] B ) ) -> t e. CC ) |
112 |
4
|
adantr |
|- ( ( ph /\ t e. ( A [,] B ) ) -> N e. NN0 ) |
113 |
111 112
|
expcld |
|- ( ( ph /\ t e. ( A [,] B ) ) -> ( t ^ N ) e. CC ) |
114 |
110 113
|
mulcld |
|- ( ( ph /\ t e. ( A [,] B ) ) -> ( ( N + 1 ) x. ( t ^ N ) ) e. CC ) |
115 |
|
cncfmptc |
|- ( ( ( N + 1 ) e. CC /\ ( A [,] B ) C_ CC /\ CC C_ CC ) -> ( t e. ( A [,] B ) |-> ( N + 1 ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
116 |
7 11 59 115
|
syl3anc |
|- ( ph -> ( t e. ( A [,] B ) |-> ( N + 1 ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
117 |
11
|
resmptd |
|- ( ph -> ( ( t e. CC |-> ( t ^ N ) ) |` ( A [,] B ) ) = ( t e. ( A [,] B ) |-> ( t ^ N ) ) ) |
118 |
|
rescncf |
|- ( ( A [,] B ) C_ CC -> ( ( t e. CC |-> ( t ^ N ) ) e. ( CC -cn-> CC ) -> ( ( t e. CC |-> ( t ^ N ) ) |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) ) ) |
119 |
11 100 118
|
sylc |
|- ( ph -> ( ( t e. CC |-> ( t ^ N ) ) |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
120 |
117 119
|
eqeltrrd |
|- ( ph -> ( t e. ( A [,] B ) |-> ( t ^ N ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
121 |
116 120
|
mulcncf |
|- ( ph -> ( t e. ( A [,] B ) |-> ( ( N + 1 ) x. ( t ^ N ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
122 |
|
cnicciblnc |
|- ( ( A e. RR /\ B e. RR /\ ( t e. ( A [,] B ) |-> ( ( N + 1 ) x. ( t ^ N ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) -> ( t e. ( A [,] B ) |-> ( ( N + 1 ) x. ( t ^ N ) ) ) e. L^1 ) |
123 |
1 2 121 122
|
syl3anc |
|- ( ph -> ( t e. ( A [,] B ) |-> ( ( N + 1 ) x. ( t ^ N ) ) ) e. L^1 ) |
124 |
33 107 114 123
|
iblss |
|- ( ph -> ( t e. ( A (,) B ) |-> ( ( N + 1 ) x. ( t ^ N ) ) ) e. L^1 ) |
125 |
91 124
|
eqeltrd |
|- ( ph -> ( RR _D ( t e. ( A [,] B ) |-> ( t ^ ( N + 1 ) ) ) ) e. L^1 ) |
126 |
11
|
resmptd |
|- ( ph -> ( ( t e. CC |-> ( t ^ ( N + 1 ) ) ) |` ( A [,] B ) ) = ( t e. ( A [,] B ) |-> ( t ^ ( N + 1 ) ) ) ) |
127 |
|
expcncf |
|- ( ( N + 1 ) e. NN0 -> ( t e. CC |-> ( t ^ ( N + 1 ) ) ) e. ( CC -cn-> CC ) ) |
128 |
45 127
|
syl |
|- ( ph -> ( t e. CC |-> ( t ^ ( N + 1 ) ) ) e. ( CC -cn-> CC ) ) |
129 |
|
rescncf |
|- ( ( A [,] B ) C_ CC -> ( ( t e. CC |-> ( t ^ ( N + 1 ) ) ) e. ( CC -cn-> CC ) -> ( ( t e. CC |-> ( t ^ ( N + 1 ) ) ) |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) ) ) |
130 |
11 128 129
|
sylc |
|- ( ph -> ( ( t e. CC |-> ( t ^ ( N + 1 ) ) ) |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
131 |
126 130
|
eqeltrrd |
|- ( ph -> ( t e. ( A [,] B ) |-> ( t ^ ( N + 1 ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
132 |
1 2 3 105 125 131
|
ftc2 |
|- ( ph -> S. ( A (,) B ) ( ( RR _D ( t e. ( A [,] B ) |-> ( t ^ ( N + 1 ) ) ) ) ` x ) _d x = ( ( ( t e. ( A [,] B ) |-> ( t ^ ( N + 1 ) ) ) ` B ) - ( ( t e. ( A [,] B ) |-> ( t ^ ( N + 1 ) ) ) ` A ) ) ) |
133 |
91
|
fveq1d |
|- ( ph -> ( ( RR _D ( t e. ( A [,] B ) |-> ( t ^ ( N + 1 ) ) ) ) ` x ) = ( ( t e. ( A (,) B ) |-> ( ( N + 1 ) x. ( t ^ N ) ) ) ` x ) ) |
134 |
133
|
ralrimivw |
|- ( ph -> A. x e. ( A (,) B ) ( ( RR _D ( t e. ( A [,] B ) |-> ( t ^ ( N + 1 ) ) ) ) ` x ) = ( ( t e. ( A (,) B ) |-> ( ( N + 1 ) x. ( t ^ N ) ) ) ` x ) ) |
135 |
|
itgeq2 |
|- ( A. x e. ( A (,) B ) ( ( RR _D ( t e. ( A [,] B ) |-> ( t ^ ( N + 1 ) ) ) ) ` x ) = ( ( t e. ( A (,) B ) |-> ( ( N + 1 ) x. ( t ^ N ) ) ) ` x ) -> S. ( A (,) B ) ( ( RR _D ( t e. ( A [,] B ) |-> ( t ^ ( N + 1 ) ) ) ) ` x ) _d x = S. ( A (,) B ) ( ( t e. ( A (,) B ) |-> ( ( N + 1 ) x. ( t ^ N ) ) ) ` x ) _d x ) |
136 |
134 135
|
syl |
|- ( ph -> S. ( A (,) B ) ( ( RR _D ( t e. ( A [,] B ) |-> ( t ^ ( N + 1 ) ) ) ) ` x ) _d x = S. ( A (,) B ) ( ( t e. ( A (,) B ) |-> ( ( N + 1 ) x. ( t ^ N ) ) ) ` x ) _d x ) |
137 |
|
eqidd |
|- ( ph -> ( t e. ( A [,] B ) |-> ( t ^ ( N + 1 ) ) ) = ( t e. ( A [,] B ) |-> ( t ^ ( N + 1 ) ) ) ) |
138 |
|
simpr |
|- ( ( ph /\ t = B ) -> t = B ) |
139 |
138
|
oveq1d |
|- ( ( ph /\ t = B ) -> ( t ^ ( N + 1 ) ) = ( B ^ ( N + 1 ) ) ) |
140 |
1
|
rexrd |
|- ( ph -> A e. RR* ) |
141 |
2
|
rexrd |
|- ( ph -> B e. RR* ) |
142 |
|
ubicc2 |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> B e. ( A [,] B ) ) |
143 |
140 141 3 142
|
syl3anc |
|- ( ph -> B e. ( A [,] B ) ) |
144 |
2
|
recnd |
|- ( ph -> B e. CC ) |
145 |
144 45
|
expcld |
|- ( ph -> ( B ^ ( N + 1 ) ) e. CC ) |
146 |
137 139 143 145
|
fvmptd |
|- ( ph -> ( ( t e. ( A [,] B ) |-> ( t ^ ( N + 1 ) ) ) ` B ) = ( B ^ ( N + 1 ) ) ) |
147 |
|
simpr |
|- ( ( ph /\ t = A ) -> t = A ) |
148 |
147
|
oveq1d |
|- ( ( ph /\ t = A ) -> ( t ^ ( N + 1 ) ) = ( A ^ ( N + 1 ) ) ) |
149 |
|
lbicc2 |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> A e. ( A [,] B ) ) |
150 |
140 141 3 149
|
syl3anc |
|- ( ph -> A e. ( A [,] B ) ) |
151 |
1
|
recnd |
|- ( ph -> A e. CC ) |
152 |
151 45
|
expcld |
|- ( ph -> ( A ^ ( N + 1 ) ) e. CC ) |
153 |
137 148 150 152
|
fvmptd |
|- ( ph -> ( ( t e. ( A [,] B ) |-> ( t ^ ( N + 1 ) ) ) ` A ) = ( A ^ ( N + 1 ) ) ) |
154 |
146 153
|
oveq12d |
|- ( ph -> ( ( ( t e. ( A [,] B ) |-> ( t ^ ( N + 1 ) ) ) ` B ) - ( ( t e. ( A [,] B ) |-> ( t ^ ( N + 1 ) ) ) ` A ) ) = ( ( B ^ ( N + 1 ) ) - ( A ^ ( N + 1 ) ) ) ) |
155 |
132 136 154
|
3eqtr3d |
|- ( ph -> S. ( A (,) B ) ( ( t e. ( A (,) B ) |-> ( ( N + 1 ) x. ( t ^ N ) ) ) ` x ) _d x = ( ( B ^ ( N + 1 ) ) - ( A ^ ( N + 1 ) ) ) ) |
156 |
7
|
adantr |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( N + 1 ) e. CC ) |
157 |
156 14
|
mulcld |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( ( N + 1 ) x. ( x ^ N ) ) e. CC ) |
158 |
1 2 157
|
itgioo |
|- ( ph -> S. ( A (,) B ) ( ( N + 1 ) x. ( x ^ N ) ) _d x = S. ( A [,] B ) ( ( N + 1 ) x. ( x ^ N ) ) _d x ) |
159 |
38 155 158
|
3eqtr3rd |
|- ( ph -> S. ( A [,] B ) ( ( N + 1 ) x. ( x ^ N ) ) _d x = ( ( B ^ ( N + 1 ) ) - ( A ^ ( N + 1 ) ) ) ) |
160 |
25 159
|
eqtrd |
|- ( ph -> ( ( N + 1 ) x. S. ( A [,] B ) ( x ^ N ) _d x ) = ( ( B ^ ( N + 1 ) ) - ( A ^ ( N + 1 ) ) ) ) |
161 |
7 23 24 160
|
mvllmuld |
|- ( ph -> S. ( A [,] B ) ( x ^ N ) _d x = ( ( ( B ^ ( N + 1 ) ) - ( A ^ ( N + 1 ) ) ) / ( N + 1 ) ) ) |