Step |
Hyp |
Ref |
Expression |
1 |
|
itgsbtaddcnst.a |
|- ( ph -> A e. RR ) |
2 |
|
itgsbtaddcnst.b |
|- ( ph -> B e. RR ) |
3 |
|
itgsbtaddcnst.aleb |
|- ( ph -> A <_ B ) |
4 |
|
itgsbtaddcnst.x |
|- ( ph -> X e. RR ) |
5 |
|
itgsbtaddcnst.f |
|- ( ph -> F e. ( ( A [,] B ) -cn-> CC ) ) |
6 |
1 2
|
iccssred |
|- ( ph -> ( A [,] B ) C_ RR ) |
7 |
6
|
sselda |
|- ( ( ph /\ t e. ( A [,] B ) ) -> t e. RR ) |
8 |
7
|
recnd |
|- ( ( ph /\ t e. ( A [,] B ) ) -> t e. CC ) |
9 |
4
|
recnd |
|- ( ph -> X e. CC ) |
10 |
9
|
adantr |
|- ( ( ph /\ t e. ( A [,] B ) ) -> X e. CC ) |
11 |
8 10
|
negsubd |
|- ( ( ph /\ t e. ( A [,] B ) ) -> ( t + -u X ) = ( t - X ) ) |
12 |
11
|
eqcomd |
|- ( ( ph /\ t e. ( A [,] B ) ) -> ( t - X ) = ( t + -u X ) ) |
13 |
12
|
mpteq2dva |
|- ( ph -> ( t e. ( A [,] B ) |-> ( t - X ) ) = ( t e. ( A [,] B ) |-> ( t + -u X ) ) ) |
14 |
1
|
adantr |
|- ( ( ph /\ t e. ( A [,] B ) ) -> A e. RR ) |
15 |
4
|
adantr |
|- ( ( ph /\ t e. ( A [,] B ) ) -> X e. RR ) |
16 |
14 15
|
resubcld |
|- ( ( ph /\ t e. ( A [,] B ) ) -> ( A - X ) e. RR ) |
17 |
2
|
adantr |
|- ( ( ph /\ t e. ( A [,] B ) ) -> B e. RR ) |
18 |
17 15
|
resubcld |
|- ( ( ph /\ t e. ( A [,] B ) ) -> ( B - X ) e. RR ) |
19 |
7 15
|
resubcld |
|- ( ( ph /\ t e. ( A [,] B ) ) -> ( t - X ) e. RR ) |
20 |
|
simpr |
|- ( ( ph /\ t e. ( A [,] B ) ) -> t e. ( A [,] B ) ) |
21 |
1 2
|
jca |
|- ( ph -> ( A e. RR /\ B e. RR ) ) |
22 |
21
|
adantr |
|- ( ( ph /\ t e. ( A [,] B ) ) -> ( A e. RR /\ B e. RR ) ) |
23 |
|
elicc2 |
|- ( ( A e. RR /\ B e. RR ) -> ( t e. ( A [,] B ) <-> ( t e. RR /\ A <_ t /\ t <_ B ) ) ) |
24 |
22 23
|
syl |
|- ( ( ph /\ t e. ( A [,] B ) ) -> ( t e. ( A [,] B ) <-> ( t e. RR /\ A <_ t /\ t <_ B ) ) ) |
25 |
20 24
|
mpbid |
|- ( ( ph /\ t e. ( A [,] B ) ) -> ( t e. RR /\ A <_ t /\ t <_ B ) ) |
26 |
25
|
simp2d |
|- ( ( ph /\ t e. ( A [,] B ) ) -> A <_ t ) |
27 |
14 7 15 26
|
lesub1dd |
|- ( ( ph /\ t e. ( A [,] B ) ) -> ( A - X ) <_ ( t - X ) ) |
28 |
25
|
simp3d |
|- ( ( ph /\ t e. ( A [,] B ) ) -> t <_ B ) |
29 |
7 17 15 28
|
lesub1dd |
|- ( ( ph /\ t e. ( A [,] B ) ) -> ( t - X ) <_ ( B - X ) ) |
30 |
16 18 19 27 29
|
eliccd |
|- ( ( ph /\ t e. ( A [,] B ) ) -> ( t - X ) e. ( ( A - X ) [,] ( B - X ) ) ) |
31 |
30
|
fmpttd |
|- ( ph -> ( t e. ( A [,] B ) |-> ( t - X ) ) : ( A [,] B ) --> ( ( A - X ) [,] ( B - X ) ) ) |
32 |
13 31
|
feq1dd |
|- ( ph -> ( t e. ( A [,] B ) |-> ( t + -u X ) ) : ( A [,] B ) --> ( ( A - X ) [,] ( B - X ) ) ) |
33 |
1 4
|
resubcld |
|- ( ph -> ( A - X ) e. RR ) |
34 |
2 4
|
resubcld |
|- ( ph -> ( B - X ) e. RR ) |
35 |
33 34
|
iccssred |
|- ( ph -> ( ( A - X ) [,] ( B - X ) ) C_ RR ) |
36 |
|
ax-resscn |
|- RR C_ CC |
37 |
35 36
|
sstrdi |
|- ( ph -> ( ( A - X ) [,] ( B - X ) ) C_ CC ) |
38 |
6 36
|
sstrdi |
|- ( ph -> ( A [,] B ) C_ CC ) |
39 |
38
|
resmptd |
|- ( ph -> ( ( t e. CC |-> ( t - X ) ) |` ( A [,] B ) ) = ( t e. ( A [,] B ) |-> ( t - X ) ) ) |
40 |
|
ssid |
|- CC C_ CC |
41 |
|
cncfmptid |
|- ( ( CC C_ CC /\ CC C_ CC ) -> ( t e. CC |-> t ) e. ( CC -cn-> CC ) ) |
42 |
40 40 41
|
mp2an |
|- ( t e. CC |-> t ) e. ( CC -cn-> CC ) |
43 |
42
|
a1i |
|- ( X e. CC -> ( t e. CC |-> t ) e. ( CC -cn-> CC ) ) |
44 |
40
|
a1i |
|- ( X e. CC -> CC C_ CC ) |
45 |
|
id |
|- ( X e. CC -> X e. CC ) |
46 |
44 45 44
|
constcncfg |
|- ( X e. CC -> ( t e. CC |-> X ) e. ( CC -cn-> CC ) ) |
47 |
43 46
|
subcncf |
|- ( X e. CC -> ( t e. CC |-> ( t - X ) ) e. ( CC -cn-> CC ) ) |
48 |
9 47
|
syl |
|- ( ph -> ( t e. CC |-> ( t - X ) ) e. ( CC -cn-> CC ) ) |
49 |
|
rescncf |
|- ( ( A [,] B ) C_ CC -> ( ( t e. CC |-> ( t - X ) ) e. ( CC -cn-> CC ) -> ( ( t e. CC |-> ( t - X ) ) |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) ) ) |
50 |
38 48 49
|
sylc |
|- ( ph -> ( ( t e. CC |-> ( t - X ) ) |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
51 |
39 50
|
eqeltrrd |
|- ( ph -> ( t e. ( A [,] B ) |-> ( t - X ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
52 |
13 51
|
eqeltrrd |
|- ( ph -> ( t e. ( A [,] B ) |-> ( t + -u X ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
53 |
|
cncffvrn |
|- ( ( ( ( A - X ) [,] ( B - X ) ) C_ CC /\ ( t e. ( A [,] B ) |-> ( t + -u X ) ) e. ( ( A [,] B ) -cn-> CC ) ) -> ( ( t e. ( A [,] B ) |-> ( t + -u X ) ) e. ( ( A [,] B ) -cn-> ( ( A - X ) [,] ( B - X ) ) ) <-> ( t e. ( A [,] B ) |-> ( t + -u X ) ) : ( A [,] B ) --> ( ( A - X ) [,] ( B - X ) ) ) ) |
54 |
37 52 53
|
syl2anc |
|- ( ph -> ( ( t e. ( A [,] B ) |-> ( t + -u X ) ) e. ( ( A [,] B ) -cn-> ( ( A - X ) [,] ( B - X ) ) ) <-> ( t e. ( A [,] B ) |-> ( t + -u X ) ) : ( A [,] B ) --> ( ( A - X ) [,] ( B - X ) ) ) ) |
55 |
32 54
|
mpbird |
|- ( ph -> ( t e. ( A [,] B ) |-> ( t + -u X ) ) e. ( ( A [,] B ) -cn-> ( ( A - X ) [,] ( B - X ) ) ) ) |
56 |
13 55
|
eqeltrd |
|- ( ph -> ( t e. ( A [,] B ) |-> ( t - X ) ) e. ( ( A [,] B ) -cn-> ( ( A - X ) [,] ( B - X ) ) ) ) |
57 |
|
eqid |
|- ( s e. CC |-> ( X + s ) ) = ( s e. CC |-> ( X + s ) ) |
58 |
9
|
adantr |
|- ( ( ph /\ s e. CC ) -> X e. CC ) |
59 |
|
simpr |
|- ( ( ph /\ s e. CC ) -> s e. CC ) |
60 |
58 59
|
addcomd |
|- ( ( ph /\ s e. CC ) -> ( X + s ) = ( s + X ) ) |
61 |
60
|
mpteq2dva |
|- ( ph -> ( s e. CC |-> ( X + s ) ) = ( s e. CC |-> ( s + X ) ) ) |
62 |
|
eqid |
|- ( s e. CC |-> ( s + X ) ) = ( s e. CC |-> ( s + X ) ) |
63 |
62
|
addccncf |
|- ( X e. CC -> ( s e. CC |-> ( s + X ) ) e. ( CC -cn-> CC ) ) |
64 |
9 63
|
syl |
|- ( ph -> ( s e. CC |-> ( s + X ) ) e. ( CC -cn-> CC ) ) |
65 |
61 64
|
eqeltrd |
|- ( ph -> ( s e. CC |-> ( X + s ) ) e. ( CC -cn-> CC ) ) |
66 |
1
|
adantr |
|- ( ( ph /\ s e. ( ( A - X ) [,] ( B - X ) ) ) -> A e. RR ) |
67 |
2
|
adantr |
|- ( ( ph /\ s e. ( ( A - X ) [,] ( B - X ) ) ) -> B e. RR ) |
68 |
4
|
adantr |
|- ( ( ph /\ s e. ( ( A - X ) [,] ( B - X ) ) ) -> X e. RR ) |
69 |
35
|
sselda |
|- ( ( ph /\ s e. ( ( A - X ) [,] ( B - X ) ) ) -> s e. RR ) |
70 |
68 69
|
readdcld |
|- ( ( ph /\ s e. ( ( A - X ) [,] ( B - X ) ) ) -> ( X + s ) e. RR ) |
71 |
|
simpr |
|- ( ( ph /\ s e. ( ( A - X ) [,] ( B - X ) ) ) -> s e. ( ( A - X ) [,] ( B - X ) ) ) |
72 |
33
|
adantr |
|- ( ( ph /\ s e. ( ( A - X ) [,] ( B - X ) ) ) -> ( A - X ) e. RR ) |
73 |
34
|
adantr |
|- ( ( ph /\ s e. ( ( A - X ) [,] ( B - X ) ) ) -> ( B - X ) e. RR ) |
74 |
|
elicc2 |
|- ( ( ( A - X ) e. RR /\ ( B - X ) e. RR ) -> ( s e. ( ( A - X ) [,] ( B - X ) ) <-> ( s e. RR /\ ( A - X ) <_ s /\ s <_ ( B - X ) ) ) ) |
75 |
72 73 74
|
syl2anc |
|- ( ( ph /\ s e. ( ( A - X ) [,] ( B - X ) ) ) -> ( s e. ( ( A - X ) [,] ( B - X ) ) <-> ( s e. RR /\ ( A - X ) <_ s /\ s <_ ( B - X ) ) ) ) |
76 |
71 75
|
mpbid |
|- ( ( ph /\ s e. ( ( A - X ) [,] ( B - X ) ) ) -> ( s e. RR /\ ( A - X ) <_ s /\ s <_ ( B - X ) ) ) |
77 |
76
|
simp2d |
|- ( ( ph /\ s e. ( ( A - X ) [,] ( B - X ) ) ) -> ( A - X ) <_ s ) |
78 |
66 68 69
|
lesubadd2d |
|- ( ( ph /\ s e. ( ( A - X ) [,] ( B - X ) ) ) -> ( ( A - X ) <_ s <-> A <_ ( X + s ) ) ) |
79 |
77 78
|
mpbid |
|- ( ( ph /\ s e. ( ( A - X ) [,] ( B - X ) ) ) -> A <_ ( X + s ) ) |
80 |
76
|
simp3d |
|- ( ( ph /\ s e. ( ( A - X ) [,] ( B - X ) ) ) -> s <_ ( B - X ) ) |
81 |
68 69 67
|
leaddsub2d |
|- ( ( ph /\ s e. ( ( A - X ) [,] ( B - X ) ) ) -> ( ( X + s ) <_ B <-> s <_ ( B - X ) ) ) |
82 |
80 81
|
mpbird |
|- ( ( ph /\ s e. ( ( A - X ) [,] ( B - X ) ) ) -> ( X + s ) <_ B ) |
83 |
66 67 70 79 82
|
eliccd |
|- ( ( ph /\ s e. ( ( A - X ) [,] ( B - X ) ) ) -> ( X + s ) e. ( A [,] B ) ) |
84 |
57 65 37 38 83
|
cncfmptssg |
|- ( ph -> ( s e. ( ( A - X ) [,] ( B - X ) ) |-> ( X + s ) ) e. ( ( ( A - X ) [,] ( B - X ) ) -cn-> ( A [,] B ) ) ) |
85 |
84 5
|
cncfcompt |
|- ( ph -> ( s e. ( ( A - X ) [,] ( B - X ) ) |-> ( F ` ( X + s ) ) ) e. ( ( ( A - X ) [,] ( B - X ) ) -cn-> CC ) ) |
86 |
|
ax-1cn |
|- 1 e. CC |
87 |
|
ioosscn |
|- ( A (,) B ) C_ CC |
88 |
|
cncfmptc |
|- ( ( 1 e. CC /\ ( A (,) B ) C_ CC /\ CC C_ CC ) -> ( t e. ( A (,) B ) |-> 1 ) e. ( ( A (,) B ) -cn-> CC ) ) |
89 |
86 87 40 88
|
mp3an |
|- ( t e. ( A (,) B ) |-> 1 ) e. ( ( A (,) B ) -cn-> CC ) |
90 |
89
|
a1i |
|- ( ph -> ( t e. ( A (,) B ) |-> 1 ) e. ( ( A (,) B ) -cn-> CC ) ) |
91 |
|
fconstmpt |
|- ( ( A (,) B ) X. { 1 } ) = ( t e. ( A (,) B ) |-> 1 ) |
92 |
|
ioombl |
|- ( A (,) B ) e. dom vol |
93 |
92
|
a1i |
|- ( ph -> ( A (,) B ) e. dom vol ) |
94 |
|
volioo |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol ` ( A (,) B ) ) = ( B - A ) ) |
95 |
1 2 3 94
|
syl3anc |
|- ( ph -> ( vol ` ( A (,) B ) ) = ( B - A ) ) |
96 |
2 1
|
resubcld |
|- ( ph -> ( B - A ) e. RR ) |
97 |
95 96
|
eqeltrd |
|- ( ph -> ( vol ` ( A (,) B ) ) e. RR ) |
98 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
99 |
|
iblconst |
|- ( ( ( A (,) B ) e. dom vol /\ ( vol ` ( A (,) B ) ) e. RR /\ 1 e. CC ) -> ( ( A (,) B ) X. { 1 } ) e. L^1 ) |
100 |
93 97 98 99
|
syl3anc |
|- ( ph -> ( ( A (,) B ) X. { 1 } ) e. L^1 ) |
101 |
91 100
|
eqeltrrid |
|- ( ph -> ( t e. ( A (,) B ) |-> 1 ) e. L^1 ) |
102 |
90 101
|
elind |
|- ( ph -> ( t e. ( A (,) B ) |-> 1 ) e. ( ( ( A (,) B ) -cn-> CC ) i^i L^1 ) ) |
103 |
36
|
a1i |
|- ( ph -> RR C_ CC ) |
104 |
19
|
recnd |
|- ( ( ph /\ t e. ( A [,] B ) ) -> ( t - X ) e. CC ) |
105 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
106 |
105
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
107 |
|
iccntr |
|- ( ( A e. RR /\ B e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) |
108 |
21 107
|
syl |
|- ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) |
109 |
103 6 104 106 105 108
|
dvmptntr |
|- ( ph -> ( RR _D ( t e. ( A [,] B ) |-> ( t - X ) ) ) = ( RR _D ( t e. ( A (,) B ) |-> ( t - X ) ) ) ) |
110 |
|
reelprrecn |
|- RR e. { RR , CC } |
111 |
110
|
a1i |
|- ( ph -> RR e. { RR , CC } ) |
112 |
|
ioossre |
|- ( A (,) B ) C_ RR |
113 |
112
|
sseli |
|- ( t e. ( A (,) B ) -> t e. RR ) |
114 |
113
|
adantl |
|- ( ( ph /\ t e. ( A (,) B ) ) -> t e. RR ) |
115 |
114
|
recnd |
|- ( ( ph /\ t e. ( A (,) B ) ) -> t e. CC ) |
116 |
|
1cnd |
|- ( ( ph /\ t e. ( A (,) B ) ) -> 1 e. CC ) |
117 |
103
|
sselda |
|- ( ( ph /\ t e. RR ) -> t e. CC ) |
118 |
|
1cnd |
|- ( ( ph /\ t e. RR ) -> 1 e. CC ) |
119 |
111
|
dvmptid |
|- ( ph -> ( RR _D ( t e. RR |-> t ) ) = ( t e. RR |-> 1 ) ) |
120 |
112
|
a1i |
|- ( ph -> ( A (,) B ) C_ RR ) |
121 |
|
iooretop |
|- ( A (,) B ) e. ( topGen ` ran (,) ) |
122 |
121
|
a1i |
|- ( ph -> ( A (,) B ) e. ( topGen ` ran (,) ) ) |
123 |
111 117 118 119 120 106 105 122
|
dvmptres |
|- ( ph -> ( RR _D ( t e. ( A (,) B ) |-> t ) ) = ( t e. ( A (,) B ) |-> 1 ) ) |
124 |
9
|
adantr |
|- ( ( ph /\ t e. ( A (,) B ) ) -> X e. CC ) |
125 |
|
0cnd |
|- ( ( ph /\ t e. ( A (,) B ) ) -> 0 e. CC ) |
126 |
9
|
adantr |
|- ( ( ph /\ t e. RR ) -> X e. CC ) |
127 |
|
0cnd |
|- ( ( ph /\ t e. RR ) -> 0 e. CC ) |
128 |
111 9
|
dvmptc |
|- ( ph -> ( RR _D ( t e. RR |-> X ) ) = ( t e. RR |-> 0 ) ) |
129 |
111 126 127 128 120 106 105 122
|
dvmptres |
|- ( ph -> ( RR _D ( t e. ( A (,) B ) |-> X ) ) = ( t e. ( A (,) B ) |-> 0 ) ) |
130 |
111 115 116 123 124 125 129
|
dvmptsub |
|- ( ph -> ( RR _D ( t e. ( A (,) B ) |-> ( t - X ) ) ) = ( t e. ( A (,) B ) |-> ( 1 - 0 ) ) ) |
131 |
116
|
subid1d |
|- ( ( ph /\ t e. ( A (,) B ) ) -> ( 1 - 0 ) = 1 ) |
132 |
131
|
mpteq2dva |
|- ( ph -> ( t e. ( A (,) B ) |-> ( 1 - 0 ) ) = ( t e. ( A (,) B ) |-> 1 ) ) |
133 |
109 130 132
|
3eqtrd |
|- ( ph -> ( RR _D ( t e. ( A [,] B ) |-> ( t - X ) ) ) = ( t e. ( A (,) B ) |-> 1 ) ) |
134 |
|
oveq2 |
|- ( s = ( t - X ) -> ( X + s ) = ( X + ( t - X ) ) ) |
135 |
134
|
fveq2d |
|- ( s = ( t - X ) -> ( F ` ( X + s ) ) = ( F ` ( X + ( t - X ) ) ) ) |
136 |
|
oveq1 |
|- ( t = A -> ( t - X ) = ( A - X ) ) |
137 |
|
oveq1 |
|- ( t = B -> ( t - X ) = ( B - X ) ) |
138 |
1 2 3 56 85 102 133 135 136 137 33 34
|
itgsubsticc |
|- ( ph -> S_ [ ( A - X ) -> ( B - X ) ] ( F ` ( X + s ) ) _d s = S_ [ A -> B ] ( ( F ` ( X + ( t - X ) ) ) x. 1 ) _d t ) |
139 |
124 115
|
pncan3d |
|- ( ( ph /\ t e. ( A (,) B ) ) -> ( X + ( t - X ) ) = t ) |
140 |
139
|
fveq2d |
|- ( ( ph /\ t e. ( A (,) B ) ) -> ( F ` ( X + ( t - X ) ) ) = ( F ` t ) ) |
141 |
140
|
oveq1d |
|- ( ( ph /\ t e. ( A (,) B ) ) -> ( ( F ` ( X + ( t - X ) ) ) x. 1 ) = ( ( F ` t ) x. 1 ) ) |
142 |
|
cncff |
|- ( F e. ( ( A [,] B ) -cn-> CC ) -> F : ( A [,] B ) --> CC ) |
143 |
5 142
|
syl |
|- ( ph -> F : ( A [,] B ) --> CC ) |
144 |
143
|
adantr |
|- ( ( ph /\ t e. ( A (,) B ) ) -> F : ( A [,] B ) --> CC ) |
145 |
|
ioossicc |
|- ( A (,) B ) C_ ( A [,] B ) |
146 |
145
|
sseli |
|- ( t e. ( A (,) B ) -> t e. ( A [,] B ) ) |
147 |
146
|
adantl |
|- ( ( ph /\ t e. ( A (,) B ) ) -> t e. ( A [,] B ) ) |
148 |
144 147
|
ffvelrnd |
|- ( ( ph /\ t e. ( A (,) B ) ) -> ( F ` t ) e. CC ) |
149 |
148
|
mulid1d |
|- ( ( ph /\ t e. ( A (,) B ) ) -> ( ( F ` t ) x. 1 ) = ( F ` t ) ) |
150 |
141 149
|
eqtrd |
|- ( ( ph /\ t e. ( A (,) B ) ) -> ( ( F ` ( X + ( t - X ) ) ) x. 1 ) = ( F ` t ) ) |
151 |
3 150
|
ditgeq3d |
|- ( ph -> S_ [ A -> B ] ( ( F ` ( X + ( t - X ) ) ) x. 1 ) _d t = S_ [ A -> B ] ( F ` t ) _d t ) |
152 |
138 151
|
eqtrd |
|- ( ph -> S_ [ ( A - X ) -> ( B - X ) ] ( F ` ( X + s ) ) _d s = S_ [ A -> B ] ( F ` t ) _d t ) |