| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							itgsbtaddcnst.a | 
							 |-  ( ph -> A e. RR )  | 
						
						
							| 2 | 
							
								
							 | 
							itgsbtaddcnst.b | 
							 |-  ( ph -> B e. RR )  | 
						
						
							| 3 | 
							
								
							 | 
							itgsbtaddcnst.aleb | 
							 |-  ( ph -> A <_ B )  | 
						
						
							| 4 | 
							
								
							 | 
							itgsbtaddcnst.x | 
							 |-  ( ph -> X e. RR )  | 
						
						
							| 5 | 
							
								
							 | 
							itgsbtaddcnst.f | 
							 |-  ( ph -> F e. ( ( A [,] B ) -cn-> CC ) )  | 
						
						
							| 6 | 
							
								1 2
							 | 
							iccssred | 
							 |-  ( ph -> ( A [,] B ) C_ RR )  | 
						
						
							| 7 | 
							
								6
							 | 
							sselda | 
							 |-  ( ( ph /\ t e. ( A [,] B ) ) -> t e. RR )  | 
						
						
							| 8 | 
							
								7
							 | 
							recnd | 
							 |-  ( ( ph /\ t e. ( A [,] B ) ) -> t e. CC )  | 
						
						
							| 9 | 
							
								4
							 | 
							recnd | 
							 |-  ( ph -> X e. CC )  | 
						
						
							| 10 | 
							
								9
							 | 
							adantr | 
							 |-  ( ( ph /\ t e. ( A [,] B ) ) -> X e. CC )  | 
						
						
							| 11 | 
							
								8 10
							 | 
							negsubd | 
							 |-  ( ( ph /\ t e. ( A [,] B ) ) -> ( t + -u X ) = ( t - X ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							eqcomd | 
							 |-  ( ( ph /\ t e. ( A [,] B ) ) -> ( t - X ) = ( t + -u X ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							mpteq2dva | 
							 |-  ( ph -> ( t e. ( A [,] B ) |-> ( t - X ) ) = ( t e. ( A [,] B ) |-> ( t + -u X ) ) )  | 
						
						
							| 14 | 
							
								1
							 | 
							adantr | 
							 |-  ( ( ph /\ t e. ( A [,] B ) ) -> A e. RR )  | 
						
						
							| 15 | 
							
								4
							 | 
							adantr | 
							 |-  ( ( ph /\ t e. ( A [,] B ) ) -> X e. RR )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							resubcld | 
							 |-  ( ( ph /\ t e. ( A [,] B ) ) -> ( A - X ) e. RR )  | 
						
						
							| 17 | 
							
								2
							 | 
							adantr | 
							 |-  ( ( ph /\ t e. ( A [,] B ) ) -> B e. RR )  | 
						
						
							| 18 | 
							
								17 15
							 | 
							resubcld | 
							 |-  ( ( ph /\ t e. ( A [,] B ) ) -> ( B - X ) e. RR )  | 
						
						
							| 19 | 
							
								7 15
							 | 
							resubcld | 
							 |-  ( ( ph /\ t e. ( A [,] B ) ) -> ( t - X ) e. RR )  | 
						
						
							| 20 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ t e. ( A [,] B ) ) -> t e. ( A [,] B ) )  | 
						
						
							| 21 | 
							
								1 2
							 | 
							jca | 
							 |-  ( ph -> ( A e. RR /\ B e. RR ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							adantr | 
							 |-  ( ( ph /\ t e. ( A [,] B ) ) -> ( A e. RR /\ B e. RR ) )  | 
						
						
							| 23 | 
							
								
							 | 
							elicc2 | 
							 |-  ( ( A e. RR /\ B e. RR ) -> ( t e. ( A [,] B ) <-> ( t e. RR /\ A <_ t /\ t <_ B ) ) )  | 
						
						
							| 24 | 
							
								22 23
							 | 
							syl | 
							 |-  ( ( ph /\ t e. ( A [,] B ) ) -> ( t e. ( A [,] B ) <-> ( t e. RR /\ A <_ t /\ t <_ B ) ) )  | 
						
						
							| 25 | 
							
								20 24
							 | 
							mpbid | 
							 |-  ( ( ph /\ t e. ( A [,] B ) ) -> ( t e. RR /\ A <_ t /\ t <_ B ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							simp2d | 
							 |-  ( ( ph /\ t e. ( A [,] B ) ) -> A <_ t )  | 
						
						
							| 27 | 
							
								14 7 15 26
							 | 
							lesub1dd | 
							 |-  ( ( ph /\ t e. ( A [,] B ) ) -> ( A - X ) <_ ( t - X ) )  | 
						
						
							| 28 | 
							
								25
							 | 
							simp3d | 
							 |-  ( ( ph /\ t e. ( A [,] B ) ) -> t <_ B )  | 
						
						
							| 29 | 
							
								7 17 15 28
							 | 
							lesub1dd | 
							 |-  ( ( ph /\ t e. ( A [,] B ) ) -> ( t - X ) <_ ( B - X ) )  | 
						
						
							| 30 | 
							
								16 18 19 27 29
							 | 
							eliccd | 
							 |-  ( ( ph /\ t e. ( A [,] B ) ) -> ( t - X ) e. ( ( A - X ) [,] ( B - X ) ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							fmpttd | 
							 |-  ( ph -> ( t e. ( A [,] B ) |-> ( t - X ) ) : ( A [,] B ) --> ( ( A - X ) [,] ( B - X ) ) )  | 
						
						
							| 32 | 
							
								13 31
							 | 
							feq1dd | 
							 |-  ( ph -> ( t e. ( A [,] B ) |-> ( t + -u X ) ) : ( A [,] B ) --> ( ( A - X ) [,] ( B - X ) ) )  | 
						
						
							| 33 | 
							
								1 4
							 | 
							resubcld | 
							 |-  ( ph -> ( A - X ) e. RR )  | 
						
						
							| 34 | 
							
								2 4
							 | 
							resubcld | 
							 |-  ( ph -> ( B - X ) e. RR )  | 
						
						
							| 35 | 
							
								33 34
							 | 
							iccssred | 
							 |-  ( ph -> ( ( A - X ) [,] ( B - X ) ) C_ RR )  | 
						
						
							| 36 | 
							
								
							 | 
							ax-resscn | 
							 |-  RR C_ CC  | 
						
						
							| 37 | 
							
								35 36
							 | 
							sstrdi | 
							 |-  ( ph -> ( ( A - X ) [,] ( B - X ) ) C_ CC )  | 
						
						
							| 38 | 
							
								6 36
							 | 
							sstrdi | 
							 |-  ( ph -> ( A [,] B ) C_ CC )  | 
						
						
							| 39 | 
							
								38
							 | 
							resmptd | 
							 |-  ( ph -> ( ( t e. CC |-> ( t - X ) ) |` ( A [,] B ) ) = ( t e. ( A [,] B ) |-> ( t - X ) ) )  | 
						
						
							| 40 | 
							
								
							 | 
							ssid | 
							 |-  CC C_ CC  | 
						
						
							| 41 | 
							
								
							 | 
							cncfmptid | 
							 |-  ( ( CC C_ CC /\ CC C_ CC ) -> ( t e. CC |-> t ) e. ( CC -cn-> CC ) )  | 
						
						
							| 42 | 
							
								40 40 41
							 | 
							mp2an | 
							 |-  ( t e. CC |-> t ) e. ( CC -cn-> CC )  | 
						
						
							| 43 | 
							
								42
							 | 
							a1i | 
							 |-  ( X e. CC -> ( t e. CC |-> t ) e. ( CC -cn-> CC ) )  | 
						
						
							| 44 | 
							
								40
							 | 
							a1i | 
							 |-  ( X e. CC -> CC C_ CC )  | 
						
						
							| 45 | 
							
								
							 | 
							id | 
							 |-  ( X e. CC -> X e. CC )  | 
						
						
							| 46 | 
							
								44 45 44
							 | 
							constcncfg | 
							 |-  ( X e. CC -> ( t e. CC |-> X ) e. ( CC -cn-> CC ) )  | 
						
						
							| 47 | 
							
								43 46
							 | 
							subcncf | 
							 |-  ( X e. CC -> ( t e. CC |-> ( t - X ) ) e. ( CC -cn-> CC ) )  | 
						
						
							| 48 | 
							
								9 47
							 | 
							syl | 
							 |-  ( ph -> ( t e. CC |-> ( t - X ) ) e. ( CC -cn-> CC ) )  | 
						
						
							| 49 | 
							
								
							 | 
							rescncf | 
							 |-  ( ( A [,] B ) C_ CC -> ( ( t e. CC |-> ( t - X ) ) e. ( CC -cn-> CC ) -> ( ( t e. CC |-> ( t - X ) ) |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) ) )  | 
						
						
							| 50 | 
							
								38 48 49
							 | 
							sylc | 
							 |-  ( ph -> ( ( t e. CC |-> ( t - X ) ) |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) )  | 
						
						
							| 51 | 
							
								39 50
							 | 
							eqeltrrd | 
							 |-  ( ph -> ( t e. ( A [,] B ) |-> ( t - X ) ) e. ( ( A [,] B ) -cn-> CC ) )  | 
						
						
							| 52 | 
							
								13 51
							 | 
							eqeltrrd | 
							 |-  ( ph -> ( t e. ( A [,] B ) |-> ( t + -u X ) ) e. ( ( A [,] B ) -cn-> CC ) )  | 
						
						
							| 53 | 
							
								
							 | 
							cncfcdm | 
							 |-  ( ( ( ( A - X ) [,] ( B - X ) ) C_ CC /\ ( t e. ( A [,] B ) |-> ( t + -u X ) ) e. ( ( A [,] B ) -cn-> CC ) ) -> ( ( t e. ( A [,] B ) |-> ( t + -u X ) ) e. ( ( A [,] B ) -cn-> ( ( A - X ) [,] ( B - X ) ) ) <-> ( t e. ( A [,] B ) |-> ( t + -u X ) ) : ( A [,] B ) --> ( ( A - X ) [,] ( B - X ) ) ) )  | 
						
						
							| 54 | 
							
								37 52 53
							 | 
							syl2anc | 
							 |-  ( ph -> ( ( t e. ( A [,] B ) |-> ( t + -u X ) ) e. ( ( A [,] B ) -cn-> ( ( A - X ) [,] ( B - X ) ) ) <-> ( t e. ( A [,] B ) |-> ( t + -u X ) ) : ( A [,] B ) --> ( ( A - X ) [,] ( B - X ) ) ) )  | 
						
						
							| 55 | 
							
								32 54
							 | 
							mpbird | 
							 |-  ( ph -> ( t e. ( A [,] B ) |-> ( t + -u X ) ) e. ( ( A [,] B ) -cn-> ( ( A - X ) [,] ( B - X ) ) ) )  | 
						
						
							| 56 | 
							
								13 55
							 | 
							eqeltrd | 
							 |-  ( ph -> ( t e. ( A [,] B ) |-> ( t - X ) ) e. ( ( A [,] B ) -cn-> ( ( A - X ) [,] ( B - X ) ) ) )  | 
						
						
							| 57 | 
							
								
							 | 
							eqid | 
							 |-  ( s e. CC |-> ( X + s ) ) = ( s e. CC |-> ( X + s ) )  | 
						
						
							| 58 | 
							
								9
							 | 
							adantr | 
							 |-  ( ( ph /\ s e. CC ) -> X e. CC )  | 
						
						
							| 59 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ s e. CC ) -> s e. CC )  | 
						
						
							| 60 | 
							
								58 59
							 | 
							addcomd | 
							 |-  ( ( ph /\ s e. CC ) -> ( X + s ) = ( s + X ) )  | 
						
						
							| 61 | 
							
								60
							 | 
							mpteq2dva | 
							 |-  ( ph -> ( s e. CC |-> ( X + s ) ) = ( s e. CC |-> ( s + X ) ) )  | 
						
						
							| 62 | 
							
								
							 | 
							eqid | 
							 |-  ( s e. CC |-> ( s + X ) ) = ( s e. CC |-> ( s + X ) )  | 
						
						
							| 63 | 
							
								62
							 | 
							addccncf | 
							 |-  ( X e. CC -> ( s e. CC |-> ( s + X ) ) e. ( CC -cn-> CC ) )  | 
						
						
							| 64 | 
							
								9 63
							 | 
							syl | 
							 |-  ( ph -> ( s e. CC |-> ( s + X ) ) e. ( CC -cn-> CC ) )  | 
						
						
							| 65 | 
							
								61 64
							 | 
							eqeltrd | 
							 |-  ( ph -> ( s e. CC |-> ( X + s ) ) e. ( CC -cn-> CC ) )  | 
						
						
							| 66 | 
							
								1
							 | 
							adantr | 
							 |-  ( ( ph /\ s e. ( ( A - X ) [,] ( B - X ) ) ) -> A e. RR )  | 
						
						
							| 67 | 
							
								2
							 | 
							adantr | 
							 |-  ( ( ph /\ s e. ( ( A - X ) [,] ( B - X ) ) ) -> B e. RR )  | 
						
						
							| 68 | 
							
								4
							 | 
							adantr | 
							 |-  ( ( ph /\ s e. ( ( A - X ) [,] ( B - X ) ) ) -> X e. RR )  | 
						
						
							| 69 | 
							
								35
							 | 
							sselda | 
							 |-  ( ( ph /\ s e. ( ( A - X ) [,] ( B - X ) ) ) -> s e. RR )  | 
						
						
							| 70 | 
							
								68 69
							 | 
							readdcld | 
							 |-  ( ( ph /\ s e. ( ( A - X ) [,] ( B - X ) ) ) -> ( X + s ) e. RR )  | 
						
						
							| 71 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ s e. ( ( A - X ) [,] ( B - X ) ) ) -> s e. ( ( A - X ) [,] ( B - X ) ) )  | 
						
						
							| 72 | 
							
								33
							 | 
							adantr | 
							 |-  ( ( ph /\ s e. ( ( A - X ) [,] ( B - X ) ) ) -> ( A - X ) e. RR )  | 
						
						
							| 73 | 
							
								34
							 | 
							adantr | 
							 |-  ( ( ph /\ s e. ( ( A - X ) [,] ( B - X ) ) ) -> ( B - X ) e. RR )  | 
						
						
							| 74 | 
							
								
							 | 
							elicc2 | 
							 |-  ( ( ( A - X ) e. RR /\ ( B - X ) e. RR ) -> ( s e. ( ( A - X ) [,] ( B - X ) ) <-> ( s e. RR /\ ( A - X ) <_ s /\ s <_ ( B - X ) ) ) )  | 
						
						
							| 75 | 
							
								72 73 74
							 | 
							syl2anc | 
							 |-  ( ( ph /\ s e. ( ( A - X ) [,] ( B - X ) ) ) -> ( s e. ( ( A - X ) [,] ( B - X ) ) <-> ( s e. RR /\ ( A - X ) <_ s /\ s <_ ( B - X ) ) ) )  | 
						
						
							| 76 | 
							
								71 75
							 | 
							mpbid | 
							 |-  ( ( ph /\ s e. ( ( A - X ) [,] ( B - X ) ) ) -> ( s e. RR /\ ( A - X ) <_ s /\ s <_ ( B - X ) ) )  | 
						
						
							| 77 | 
							
								76
							 | 
							simp2d | 
							 |-  ( ( ph /\ s e. ( ( A - X ) [,] ( B - X ) ) ) -> ( A - X ) <_ s )  | 
						
						
							| 78 | 
							
								66 68 69
							 | 
							lesubadd2d | 
							 |-  ( ( ph /\ s e. ( ( A - X ) [,] ( B - X ) ) ) -> ( ( A - X ) <_ s <-> A <_ ( X + s ) ) )  | 
						
						
							| 79 | 
							
								77 78
							 | 
							mpbid | 
							 |-  ( ( ph /\ s e. ( ( A - X ) [,] ( B - X ) ) ) -> A <_ ( X + s ) )  | 
						
						
							| 80 | 
							
								76
							 | 
							simp3d | 
							 |-  ( ( ph /\ s e. ( ( A - X ) [,] ( B - X ) ) ) -> s <_ ( B - X ) )  | 
						
						
							| 81 | 
							
								68 69 67
							 | 
							leaddsub2d | 
							 |-  ( ( ph /\ s e. ( ( A - X ) [,] ( B - X ) ) ) -> ( ( X + s ) <_ B <-> s <_ ( B - X ) ) )  | 
						
						
							| 82 | 
							
								80 81
							 | 
							mpbird | 
							 |-  ( ( ph /\ s e. ( ( A - X ) [,] ( B - X ) ) ) -> ( X + s ) <_ B )  | 
						
						
							| 83 | 
							
								66 67 70 79 82
							 | 
							eliccd | 
							 |-  ( ( ph /\ s e. ( ( A - X ) [,] ( B - X ) ) ) -> ( X + s ) e. ( A [,] B ) )  | 
						
						
							| 84 | 
							
								57 65 37 38 83
							 | 
							cncfmptssg | 
							 |-  ( ph -> ( s e. ( ( A - X ) [,] ( B - X ) ) |-> ( X + s ) ) e. ( ( ( A - X ) [,] ( B - X ) ) -cn-> ( A [,] B ) ) )  | 
						
						
							| 85 | 
							
								84 5
							 | 
							cncfcompt | 
							 |-  ( ph -> ( s e. ( ( A - X ) [,] ( B - X ) ) |-> ( F ` ( X + s ) ) ) e. ( ( ( A - X ) [,] ( B - X ) ) -cn-> CC ) )  | 
						
						
							| 86 | 
							
								
							 | 
							ax-1cn | 
							 |-  1 e. CC  | 
						
						
							| 87 | 
							
								
							 | 
							ioosscn | 
							 |-  ( A (,) B ) C_ CC  | 
						
						
							| 88 | 
							
								
							 | 
							cncfmptc | 
							 |-  ( ( 1 e. CC /\ ( A (,) B ) C_ CC /\ CC C_ CC ) -> ( t e. ( A (,) B ) |-> 1 ) e. ( ( A (,) B ) -cn-> CC ) )  | 
						
						
							| 89 | 
							
								86 87 40 88
							 | 
							mp3an | 
							 |-  ( t e. ( A (,) B ) |-> 1 ) e. ( ( A (,) B ) -cn-> CC )  | 
						
						
							| 90 | 
							
								89
							 | 
							a1i | 
							 |-  ( ph -> ( t e. ( A (,) B ) |-> 1 ) e. ( ( A (,) B ) -cn-> CC ) )  | 
						
						
							| 91 | 
							
								
							 | 
							fconstmpt | 
							 |-  ( ( A (,) B ) X. { 1 } ) = ( t e. ( A (,) B ) |-> 1 ) | 
						
						
							| 92 | 
							
								
							 | 
							ioombl | 
							 |-  ( A (,) B ) e. dom vol  | 
						
						
							| 93 | 
							
								92
							 | 
							a1i | 
							 |-  ( ph -> ( A (,) B ) e. dom vol )  | 
						
						
							| 94 | 
							
								
							 | 
							volioo | 
							 |-  ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol ` ( A (,) B ) ) = ( B - A ) )  | 
						
						
							| 95 | 
							
								1 2 3 94
							 | 
							syl3anc | 
							 |-  ( ph -> ( vol ` ( A (,) B ) ) = ( B - A ) )  | 
						
						
							| 96 | 
							
								2 1
							 | 
							resubcld | 
							 |-  ( ph -> ( B - A ) e. RR )  | 
						
						
							| 97 | 
							
								95 96
							 | 
							eqeltrd | 
							 |-  ( ph -> ( vol ` ( A (,) B ) ) e. RR )  | 
						
						
							| 98 | 
							
								
							 | 
							1cnd | 
							 |-  ( ph -> 1 e. CC )  | 
						
						
							| 99 | 
							
								
							 | 
							iblconst | 
							 |-  ( ( ( A (,) B ) e. dom vol /\ ( vol ` ( A (,) B ) ) e. RR /\ 1 e. CC ) -> ( ( A (,) B ) X. { 1 } ) e. L^1 ) | 
						
						
							| 100 | 
							
								93 97 98 99
							 | 
							syl3anc | 
							 |-  ( ph -> ( ( A (,) B ) X. { 1 } ) e. L^1 ) | 
						
						
							| 101 | 
							
								91 100
							 | 
							eqeltrrid | 
							 |-  ( ph -> ( t e. ( A (,) B ) |-> 1 ) e. L^1 )  | 
						
						
							| 102 | 
							
								90 101
							 | 
							elind | 
							 |-  ( ph -> ( t e. ( A (,) B ) |-> 1 ) e. ( ( ( A (,) B ) -cn-> CC ) i^i L^1 ) )  | 
						
						
							| 103 | 
							
								36
							 | 
							a1i | 
							 |-  ( ph -> RR C_ CC )  | 
						
						
							| 104 | 
							
								19
							 | 
							recnd | 
							 |-  ( ( ph /\ t e. ( A [,] B ) ) -> ( t - X ) e. CC )  | 
						
						
							| 105 | 
							
								
							 | 
							tgioo4 | 
							 |-  ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR )  | 
						
						
							| 106 | 
							
								
							 | 
							eqid | 
							 |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld )  | 
						
						
							| 107 | 
							
								
							 | 
							iccntr | 
							 |-  ( ( A e. RR /\ B e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) )  | 
						
						
							| 108 | 
							
								21 107
							 | 
							syl | 
							 |-  ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) )  | 
						
						
							| 109 | 
							
								103 6 104 105 106 108
							 | 
							dvmptntr | 
							 |-  ( ph -> ( RR _D ( t e. ( A [,] B ) |-> ( t - X ) ) ) = ( RR _D ( t e. ( A (,) B ) |-> ( t - X ) ) ) )  | 
						
						
							| 110 | 
							
								
							 | 
							reelprrecn | 
							 |-  RR e. { RR , CC } | 
						
						
							| 111 | 
							
								110
							 | 
							a1i | 
							 |-  ( ph -> RR e. { RR , CC } ) | 
						
						
							| 112 | 
							
								
							 | 
							ioossre | 
							 |-  ( A (,) B ) C_ RR  | 
						
						
							| 113 | 
							
								112
							 | 
							sseli | 
							 |-  ( t e. ( A (,) B ) -> t e. RR )  | 
						
						
							| 114 | 
							
								113
							 | 
							adantl | 
							 |-  ( ( ph /\ t e. ( A (,) B ) ) -> t e. RR )  | 
						
						
							| 115 | 
							
								114
							 | 
							recnd | 
							 |-  ( ( ph /\ t e. ( A (,) B ) ) -> t e. CC )  | 
						
						
							| 116 | 
							
								
							 | 
							1cnd | 
							 |-  ( ( ph /\ t e. ( A (,) B ) ) -> 1 e. CC )  | 
						
						
							| 117 | 
							
								103
							 | 
							sselda | 
							 |-  ( ( ph /\ t e. RR ) -> t e. CC )  | 
						
						
							| 118 | 
							
								
							 | 
							1cnd | 
							 |-  ( ( ph /\ t e. RR ) -> 1 e. CC )  | 
						
						
							| 119 | 
							
								111
							 | 
							dvmptid | 
							 |-  ( ph -> ( RR _D ( t e. RR |-> t ) ) = ( t e. RR |-> 1 ) )  | 
						
						
							| 120 | 
							
								112
							 | 
							a1i | 
							 |-  ( ph -> ( A (,) B ) C_ RR )  | 
						
						
							| 121 | 
							
								
							 | 
							iooretop | 
							 |-  ( A (,) B ) e. ( topGen ` ran (,) )  | 
						
						
							| 122 | 
							
								121
							 | 
							a1i | 
							 |-  ( ph -> ( A (,) B ) e. ( topGen ` ran (,) ) )  | 
						
						
							| 123 | 
							
								111 117 118 119 120 105 106 122
							 | 
							dvmptres | 
							 |-  ( ph -> ( RR _D ( t e. ( A (,) B ) |-> t ) ) = ( t e. ( A (,) B ) |-> 1 ) )  | 
						
						
							| 124 | 
							
								9
							 | 
							adantr | 
							 |-  ( ( ph /\ t e. ( A (,) B ) ) -> X e. CC )  | 
						
						
							| 125 | 
							
								
							 | 
							0cnd | 
							 |-  ( ( ph /\ t e. ( A (,) B ) ) -> 0 e. CC )  | 
						
						
							| 126 | 
							
								9
							 | 
							adantr | 
							 |-  ( ( ph /\ t e. RR ) -> X e. CC )  | 
						
						
							| 127 | 
							
								
							 | 
							0cnd | 
							 |-  ( ( ph /\ t e. RR ) -> 0 e. CC )  | 
						
						
							| 128 | 
							
								111 9
							 | 
							dvmptc | 
							 |-  ( ph -> ( RR _D ( t e. RR |-> X ) ) = ( t e. RR |-> 0 ) )  | 
						
						
							| 129 | 
							
								111 126 127 128 120 105 106 122
							 | 
							dvmptres | 
							 |-  ( ph -> ( RR _D ( t e. ( A (,) B ) |-> X ) ) = ( t e. ( A (,) B ) |-> 0 ) )  | 
						
						
							| 130 | 
							
								111 115 116 123 124 125 129
							 | 
							dvmptsub | 
							 |-  ( ph -> ( RR _D ( t e. ( A (,) B ) |-> ( t - X ) ) ) = ( t e. ( A (,) B ) |-> ( 1 - 0 ) ) )  | 
						
						
							| 131 | 
							
								116
							 | 
							subid1d | 
							 |-  ( ( ph /\ t e. ( A (,) B ) ) -> ( 1 - 0 ) = 1 )  | 
						
						
							| 132 | 
							
								131
							 | 
							mpteq2dva | 
							 |-  ( ph -> ( t e. ( A (,) B ) |-> ( 1 - 0 ) ) = ( t e. ( A (,) B ) |-> 1 ) )  | 
						
						
							| 133 | 
							
								109 130 132
							 | 
							3eqtrd | 
							 |-  ( ph -> ( RR _D ( t e. ( A [,] B ) |-> ( t - X ) ) ) = ( t e. ( A (,) B ) |-> 1 ) )  | 
						
						
							| 134 | 
							
								
							 | 
							oveq2 | 
							 |-  ( s = ( t - X ) -> ( X + s ) = ( X + ( t - X ) ) )  | 
						
						
							| 135 | 
							
								134
							 | 
							fveq2d | 
							 |-  ( s = ( t - X ) -> ( F ` ( X + s ) ) = ( F ` ( X + ( t - X ) ) ) )  | 
						
						
							| 136 | 
							
								
							 | 
							oveq1 | 
							 |-  ( t = A -> ( t - X ) = ( A - X ) )  | 
						
						
							| 137 | 
							
								
							 | 
							oveq1 | 
							 |-  ( t = B -> ( t - X ) = ( B - X ) )  | 
						
						
							| 138 | 
							
								1 2 3 56 85 102 133 135 136 137 33 34
							 | 
							itgsubsticc | 
							 |-  ( ph -> S_ [ ( A - X ) -> ( B - X ) ] ( F ` ( X + s ) ) _d s = S_ [ A -> B ] ( ( F ` ( X + ( t - X ) ) ) x. 1 ) _d t )  | 
						
						
							| 139 | 
							
								124 115
							 | 
							pncan3d | 
							 |-  ( ( ph /\ t e. ( A (,) B ) ) -> ( X + ( t - X ) ) = t )  | 
						
						
							| 140 | 
							
								139
							 | 
							fveq2d | 
							 |-  ( ( ph /\ t e. ( A (,) B ) ) -> ( F ` ( X + ( t - X ) ) ) = ( F ` t ) )  | 
						
						
							| 141 | 
							
								140
							 | 
							oveq1d | 
							 |-  ( ( ph /\ t e. ( A (,) B ) ) -> ( ( F ` ( X + ( t - X ) ) ) x. 1 ) = ( ( F ` t ) x. 1 ) )  | 
						
						
							| 142 | 
							
								
							 | 
							cncff | 
							 |-  ( F e. ( ( A [,] B ) -cn-> CC ) -> F : ( A [,] B ) --> CC )  | 
						
						
							| 143 | 
							
								5 142
							 | 
							syl | 
							 |-  ( ph -> F : ( A [,] B ) --> CC )  | 
						
						
							| 144 | 
							
								143
							 | 
							adantr | 
							 |-  ( ( ph /\ t e. ( A (,) B ) ) -> F : ( A [,] B ) --> CC )  | 
						
						
							| 145 | 
							
								
							 | 
							ioossicc | 
							 |-  ( A (,) B ) C_ ( A [,] B )  | 
						
						
							| 146 | 
							
								145
							 | 
							sseli | 
							 |-  ( t e. ( A (,) B ) -> t e. ( A [,] B ) )  | 
						
						
							| 147 | 
							
								146
							 | 
							adantl | 
							 |-  ( ( ph /\ t e. ( A (,) B ) ) -> t e. ( A [,] B ) )  | 
						
						
							| 148 | 
							
								144 147
							 | 
							ffvelcdmd | 
							 |-  ( ( ph /\ t e. ( A (,) B ) ) -> ( F ` t ) e. CC )  | 
						
						
							| 149 | 
							
								148
							 | 
							mulridd | 
							 |-  ( ( ph /\ t e. ( A (,) B ) ) -> ( ( F ` t ) x. 1 ) = ( F ` t ) )  | 
						
						
							| 150 | 
							
								141 149
							 | 
							eqtrd | 
							 |-  ( ( ph /\ t e. ( A (,) B ) ) -> ( ( F ` ( X + ( t - X ) ) ) x. 1 ) = ( F ` t ) )  | 
						
						
							| 151 | 
							
								3 150
							 | 
							ditgeq3d | 
							 |-  ( ph -> S_ [ A -> B ] ( ( F ` ( X + ( t - X ) ) ) x. 1 ) _d t = S_ [ A -> B ] ( F ` t ) _d t )  | 
						
						
							| 152 | 
							
								138 151
							 | 
							eqtrd | 
							 |-  ( ph -> S_ [ ( A - X ) -> ( B - X ) ] ( F ` ( X + s ) ) _d s = S_ [ A -> B ] ( F ` t ) _d t )  |