Step |
Hyp |
Ref |
Expression |
1 |
|
itgsincmulx.a |
|- ( ph -> A e. CC ) |
2 |
|
itgsincmulx.an0 |
|- ( ph -> A =/= 0 ) |
3 |
|
itgsincmulx.b |
|- ( ph -> B e. RR ) |
4 |
|
itgsincmulx.c |
|- ( ph -> C e. RR ) |
5 |
|
itgsincmulx.blec |
|- ( ph -> B <_ C ) |
6 |
|
eqid |
|- ( y e. CC |-> ( -u ( cos ` ( A x. y ) ) / A ) ) = ( y e. CC |-> ( -u ( cos ` ( A x. y ) ) / A ) ) |
7 |
1
|
adantr |
|- ( ( ph /\ y e. CC ) -> A e. CC ) |
8 |
|
simpr |
|- ( ( ph /\ y e. CC ) -> y e. CC ) |
9 |
7 8
|
mulcld |
|- ( ( ph /\ y e. CC ) -> ( A x. y ) e. CC ) |
10 |
9
|
coscld |
|- ( ( ph /\ y e. CC ) -> ( cos ` ( A x. y ) ) e. CC ) |
11 |
10
|
negcld |
|- ( ( ph /\ y e. CC ) -> -u ( cos ` ( A x. y ) ) e. CC ) |
12 |
2
|
adantr |
|- ( ( ph /\ y e. CC ) -> A =/= 0 ) |
13 |
11 7 12
|
divcld |
|- ( ( ph /\ y e. CC ) -> ( -u ( cos ` ( A x. y ) ) / A ) e. CC ) |
14 |
|
cnelprrecn |
|- CC e. { RR , CC } |
15 |
14
|
a1i |
|- ( ph -> CC e. { RR , CC } ) |
16 |
9
|
sincld |
|- ( ( ph /\ y e. CC ) -> ( sin ` ( A x. y ) ) e. CC ) |
17 |
16
|
negcld |
|- ( ( ph /\ y e. CC ) -> -u ( sin ` ( A x. y ) ) e. CC ) |
18 |
7 17
|
mulcld |
|- ( ( ph /\ y e. CC ) -> ( A x. -u ( sin ` ( A x. y ) ) ) e. CC ) |
19 |
18
|
negcld |
|- ( ( ph /\ y e. CC ) -> -u ( A x. -u ( sin ` ( A x. y ) ) ) e. CC ) |
20 |
|
dvcosax |
|- ( A e. CC -> ( CC _D ( y e. CC |-> ( cos ` ( A x. y ) ) ) ) = ( y e. CC |-> ( A x. -u ( sin ` ( A x. y ) ) ) ) ) |
21 |
1 20
|
syl |
|- ( ph -> ( CC _D ( y e. CC |-> ( cos ` ( A x. y ) ) ) ) = ( y e. CC |-> ( A x. -u ( sin ` ( A x. y ) ) ) ) ) |
22 |
15 10 18 21
|
dvmptneg |
|- ( ph -> ( CC _D ( y e. CC |-> -u ( cos ` ( A x. y ) ) ) ) = ( y e. CC |-> -u ( A x. -u ( sin ` ( A x. y ) ) ) ) ) |
23 |
15 11 19 22 1 2
|
dvmptdivc |
|- ( ph -> ( CC _D ( y e. CC |-> ( -u ( cos ` ( A x. y ) ) / A ) ) ) = ( y e. CC |-> ( -u ( A x. -u ( sin ` ( A x. y ) ) ) / A ) ) ) |
24 |
18 7 12
|
divnegd |
|- ( ( ph /\ y e. CC ) -> -u ( ( A x. -u ( sin ` ( A x. y ) ) ) / A ) = ( -u ( A x. -u ( sin ` ( A x. y ) ) ) / A ) ) |
25 |
24
|
eqcomd |
|- ( ( ph /\ y e. CC ) -> ( -u ( A x. -u ( sin ` ( A x. y ) ) ) / A ) = -u ( ( A x. -u ( sin ` ( A x. y ) ) ) / A ) ) |
26 |
17 7 12
|
divcan3d |
|- ( ( ph /\ y e. CC ) -> ( ( A x. -u ( sin ` ( A x. y ) ) ) / A ) = -u ( sin ` ( A x. y ) ) ) |
27 |
26
|
negeqd |
|- ( ( ph /\ y e. CC ) -> -u ( ( A x. -u ( sin ` ( A x. y ) ) ) / A ) = -u -u ( sin ` ( A x. y ) ) ) |
28 |
16
|
negnegd |
|- ( ( ph /\ y e. CC ) -> -u -u ( sin ` ( A x. y ) ) = ( sin ` ( A x. y ) ) ) |
29 |
25 27 28
|
3eqtrd |
|- ( ( ph /\ y e. CC ) -> ( -u ( A x. -u ( sin ` ( A x. y ) ) ) / A ) = ( sin ` ( A x. y ) ) ) |
30 |
29
|
mpteq2dva |
|- ( ph -> ( y e. CC |-> ( -u ( A x. -u ( sin ` ( A x. y ) ) ) / A ) ) = ( y e. CC |-> ( sin ` ( A x. y ) ) ) ) |
31 |
23 30
|
eqtrd |
|- ( ph -> ( CC _D ( y e. CC |-> ( -u ( cos ` ( A x. y ) ) / A ) ) ) = ( y e. CC |-> ( sin ` ( A x. y ) ) ) ) |
32 |
6 13 31 16 3 4
|
dvmptresicc |
|- ( ph -> ( RR _D ( y e. ( B [,] C ) |-> ( -u ( cos ` ( A x. y ) ) / A ) ) ) = ( y e. ( B (,) C ) |-> ( sin ` ( A x. y ) ) ) ) |
33 |
32
|
fveq1d |
|- ( ph -> ( ( RR _D ( y e. ( B [,] C ) |-> ( -u ( cos ` ( A x. y ) ) / A ) ) ) ` x ) = ( ( y e. ( B (,) C ) |-> ( sin ` ( A x. y ) ) ) ` x ) ) |
34 |
33
|
adantr |
|- ( ( ph /\ x e. ( B (,) C ) ) -> ( ( RR _D ( y e. ( B [,] C ) |-> ( -u ( cos ` ( A x. y ) ) / A ) ) ) ` x ) = ( ( y e. ( B (,) C ) |-> ( sin ` ( A x. y ) ) ) ` x ) ) |
35 |
|
eqidd |
|- ( ( ph /\ x e. ( B (,) C ) ) -> ( y e. ( B (,) C ) |-> ( sin ` ( A x. y ) ) ) = ( y e. ( B (,) C ) |-> ( sin ` ( A x. y ) ) ) ) |
36 |
|
oveq2 |
|- ( y = x -> ( A x. y ) = ( A x. x ) ) |
37 |
36
|
fveq2d |
|- ( y = x -> ( sin ` ( A x. y ) ) = ( sin ` ( A x. x ) ) ) |
38 |
37
|
adantl |
|- ( ( ( ph /\ x e. ( B (,) C ) ) /\ y = x ) -> ( sin ` ( A x. y ) ) = ( sin ` ( A x. x ) ) ) |
39 |
|
simpr |
|- ( ( ph /\ x e. ( B (,) C ) ) -> x e. ( B (,) C ) ) |
40 |
1
|
adantr |
|- ( ( ph /\ x e. ( B (,) C ) ) -> A e. CC ) |
41 |
|
ioosscn |
|- ( B (,) C ) C_ CC |
42 |
41 39
|
sselid |
|- ( ( ph /\ x e. ( B (,) C ) ) -> x e. CC ) |
43 |
40 42
|
mulcld |
|- ( ( ph /\ x e. ( B (,) C ) ) -> ( A x. x ) e. CC ) |
44 |
43
|
sincld |
|- ( ( ph /\ x e. ( B (,) C ) ) -> ( sin ` ( A x. x ) ) e. CC ) |
45 |
35 38 39 44
|
fvmptd |
|- ( ( ph /\ x e. ( B (,) C ) ) -> ( ( y e. ( B (,) C ) |-> ( sin ` ( A x. y ) ) ) ` x ) = ( sin ` ( A x. x ) ) ) |
46 |
34 45
|
eqtr2d |
|- ( ( ph /\ x e. ( B (,) C ) ) -> ( sin ` ( A x. x ) ) = ( ( RR _D ( y e. ( B [,] C ) |-> ( -u ( cos ` ( A x. y ) ) / A ) ) ) ` x ) ) |
47 |
46
|
itgeq2dv |
|- ( ph -> S. ( B (,) C ) ( sin ` ( A x. x ) ) _d x = S. ( B (,) C ) ( ( RR _D ( y e. ( B [,] C ) |-> ( -u ( cos ` ( A x. y ) ) / A ) ) ) ` x ) _d x ) |
48 |
|
sincn |
|- sin e. ( CC -cn-> CC ) |
49 |
48
|
a1i |
|- ( ph -> sin e. ( CC -cn-> CC ) ) |
50 |
41
|
a1i |
|- ( ph -> ( B (,) C ) C_ CC ) |
51 |
|
ssid |
|- CC C_ CC |
52 |
51
|
a1i |
|- ( ph -> CC C_ CC ) |
53 |
50 1 52
|
constcncfg |
|- ( ph -> ( y e. ( B (,) C ) |-> A ) e. ( ( B (,) C ) -cn-> CC ) ) |
54 |
50 52
|
idcncfg |
|- ( ph -> ( y e. ( B (,) C ) |-> y ) e. ( ( B (,) C ) -cn-> CC ) ) |
55 |
53 54
|
mulcncf |
|- ( ph -> ( y e. ( B (,) C ) |-> ( A x. y ) ) e. ( ( B (,) C ) -cn-> CC ) ) |
56 |
49 55
|
cncfmpt1f |
|- ( ph -> ( y e. ( B (,) C ) |-> ( sin ` ( A x. y ) ) ) e. ( ( B (,) C ) -cn-> CC ) ) |
57 |
32 56
|
eqeltrd |
|- ( ph -> ( RR _D ( y e. ( B [,] C ) |-> ( -u ( cos ` ( A x. y ) ) / A ) ) ) e. ( ( B (,) C ) -cn-> CC ) ) |
58 |
|
ioossicc |
|- ( B (,) C ) C_ ( B [,] C ) |
59 |
58
|
a1i |
|- ( ph -> ( B (,) C ) C_ ( B [,] C ) ) |
60 |
|
ioombl |
|- ( B (,) C ) e. dom vol |
61 |
60
|
a1i |
|- ( ph -> ( B (,) C ) e. dom vol ) |
62 |
1
|
adantr |
|- ( ( ph /\ y e. ( B [,] C ) ) -> A e. CC ) |
63 |
3 4
|
iccssred |
|- ( ph -> ( B [,] C ) C_ RR ) |
64 |
|
ax-resscn |
|- RR C_ CC |
65 |
63 64
|
sstrdi |
|- ( ph -> ( B [,] C ) C_ CC ) |
66 |
65
|
sselda |
|- ( ( ph /\ y e. ( B [,] C ) ) -> y e. CC ) |
67 |
62 66
|
mulcld |
|- ( ( ph /\ y e. ( B [,] C ) ) -> ( A x. y ) e. CC ) |
68 |
67
|
sincld |
|- ( ( ph /\ y e. ( B [,] C ) ) -> ( sin ` ( A x. y ) ) e. CC ) |
69 |
65 1 52
|
constcncfg |
|- ( ph -> ( y e. ( B [,] C ) |-> A ) e. ( ( B [,] C ) -cn-> CC ) ) |
70 |
65 52
|
idcncfg |
|- ( ph -> ( y e. ( B [,] C ) |-> y ) e. ( ( B [,] C ) -cn-> CC ) ) |
71 |
69 70
|
mulcncf |
|- ( ph -> ( y e. ( B [,] C ) |-> ( A x. y ) ) e. ( ( B [,] C ) -cn-> CC ) ) |
72 |
49 71
|
cncfmpt1f |
|- ( ph -> ( y e. ( B [,] C ) |-> ( sin ` ( A x. y ) ) ) e. ( ( B [,] C ) -cn-> CC ) ) |
73 |
|
cniccibl |
|- ( ( B e. RR /\ C e. RR /\ ( y e. ( B [,] C ) |-> ( sin ` ( A x. y ) ) ) e. ( ( B [,] C ) -cn-> CC ) ) -> ( y e. ( B [,] C ) |-> ( sin ` ( A x. y ) ) ) e. L^1 ) |
74 |
3 4 72 73
|
syl3anc |
|- ( ph -> ( y e. ( B [,] C ) |-> ( sin ` ( A x. y ) ) ) e. L^1 ) |
75 |
59 61 68 74
|
iblss |
|- ( ph -> ( y e. ( B (,) C ) |-> ( sin ` ( A x. y ) ) ) e. L^1 ) |
76 |
32 75
|
eqeltrd |
|- ( ph -> ( RR _D ( y e. ( B [,] C ) |-> ( -u ( cos ` ( A x. y ) ) / A ) ) ) e. L^1 ) |
77 |
|
coscn |
|- cos e. ( CC -cn-> CC ) |
78 |
77
|
a1i |
|- ( ph -> cos e. ( CC -cn-> CC ) ) |
79 |
78 71
|
cncfmpt1f |
|- ( ph -> ( y e. ( B [,] C ) |-> ( cos ` ( A x. y ) ) ) e. ( ( B [,] C ) -cn-> CC ) ) |
80 |
79
|
negcncfg |
|- ( ph -> ( y e. ( B [,] C ) |-> -u ( cos ` ( A x. y ) ) ) e. ( ( B [,] C ) -cn-> CC ) ) |
81 |
2
|
neneqd |
|- ( ph -> -. A = 0 ) |
82 |
|
elsng |
|- ( A e. CC -> ( A e. { 0 } <-> A = 0 ) ) |
83 |
1 82
|
syl |
|- ( ph -> ( A e. { 0 } <-> A = 0 ) ) |
84 |
81 83
|
mtbird |
|- ( ph -> -. A e. { 0 } ) |
85 |
1 84
|
eldifd |
|- ( ph -> A e. ( CC \ { 0 } ) ) |
86 |
|
difssd |
|- ( ph -> ( CC \ { 0 } ) C_ CC ) |
87 |
65 85 86
|
constcncfg |
|- ( ph -> ( y e. ( B [,] C ) |-> A ) e. ( ( B [,] C ) -cn-> ( CC \ { 0 } ) ) ) |
88 |
80 87
|
divcncf |
|- ( ph -> ( y e. ( B [,] C ) |-> ( -u ( cos ` ( A x. y ) ) / A ) ) e. ( ( B [,] C ) -cn-> CC ) ) |
89 |
3 4 5 57 76 88
|
ftc2 |
|- ( ph -> S. ( B (,) C ) ( ( RR _D ( y e. ( B [,] C ) |-> ( -u ( cos ` ( A x. y ) ) / A ) ) ) ` x ) _d x = ( ( ( y e. ( B [,] C ) |-> ( -u ( cos ` ( A x. y ) ) / A ) ) ` C ) - ( ( y e. ( B [,] C ) |-> ( -u ( cos ` ( A x. y ) ) / A ) ) ` B ) ) ) |
90 |
|
eqidd |
|- ( ph -> ( y e. ( B [,] C ) |-> ( -u ( cos ` ( A x. y ) ) / A ) ) = ( y e. ( B [,] C ) |-> ( -u ( cos ` ( A x. y ) ) / A ) ) ) |
91 |
|
oveq2 |
|- ( y = C -> ( A x. y ) = ( A x. C ) ) |
92 |
91
|
fveq2d |
|- ( y = C -> ( cos ` ( A x. y ) ) = ( cos ` ( A x. C ) ) ) |
93 |
92
|
negeqd |
|- ( y = C -> -u ( cos ` ( A x. y ) ) = -u ( cos ` ( A x. C ) ) ) |
94 |
93
|
oveq1d |
|- ( y = C -> ( -u ( cos ` ( A x. y ) ) / A ) = ( -u ( cos ` ( A x. C ) ) / A ) ) |
95 |
94
|
adantl |
|- ( ( ph /\ y = C ) -> ( -u ( cos ` ( A x. y ) ) / A ) = ( -u ( cos ` ( A x. C ) ) / A ) ) |
96 |
3
|
rexrd |
|- ( ph -> B e. RR* ) |
97 |
4
|
rexrd |
|- ( ph -> C e. RR* ) |
98 |
|
ubicc2 |
|- ( ( B e. RR* /\ C e. RR* /\ B <_ C ) -> C e. ( B [,] C ) ) |
99 |
96 97 5 98
|
syl3anc |
|- ( ph -> C e. ( B [,] C ) ) |
100 |
|
ovexd |
|- ( ph -> ( -u ( cos ` ( A x. C ) ) / A ) e. _V ) |
101 |
90 95 99 100
|
fvmptd |
|- ( ph -> ( ( y e. ( B [,] C ) |-> ( -u ( cos ` ( A x. y ) ) / A ) ) ` C ) = ( -u ( cos ` ( A x. C ) ) / A ) ) |
102 |
|
oveq2 |
|- ( y = B -> ( A x. y ) = ( A x. B ) ) |
103 |
102
|
fveq2d |
|- ( y = B -> ( cos ` ( A x. y ) ) = ( cos ` ( A x. B ) ) ) |
104 |
103
|
negeqd |
|- ( y = B -> -u ( cos ` ( A x. y ) ) = -u ( cos ` ( A x. B ) ) ) |
105 |
104
|
oveq1d |
|- ( y = B -> ( -u ( cos ` ( A x. y ) ) / A ) = ( -u ( cos ` ( A x. B ) ) / A ) ) |
106 |
105
|
adantl |
|- ( ( ph /\ y = B ) -> ( -u ( cos ` ( A x. y ) ) / A ) = ( -u ( cos ` ( A x. B ) ) / A ) ) |
107 |
|
lbicc2 |
|- ( ( B e. RR* /\ C e. RR* /\ B <_ C ) -> B e. ( B [,] C ) ) |
108 |
96 97 5 107
|
syl3anc |
|- ( ph -> B e. ( B [,] C ) ) |
109 |
|
ovexd |
|- ( ph -> ( -u ( cos ` ( A x. B ) ) / A ) e. _V ) |
110 |
90 106 108 109
|
fvmptd |
|- ( ph -> ( ( y e. ( B [,] C ) |-> ( -u ( cos ` ( A x. y ) ) / A ) ) ` B ) = ( -u ( cos ` ( A x. B ) ) / A ) ) |
111 |
101 110
|
oveq12d |
|- ( ph -> ( ( ( y e. ( B [,] C ) |-> ( -u ( cos ` ( A x. y ) ) / A ) ) ` C ) - ( ( y e. ( B [,] C ) |-> ( -u ( cos ` ( A x. y ) ) / A ) ) ` B ) ) = ( ( -u ( cos ` ( A x. C ) ) / A ) - ( -u ( cos ` ( A x. B ) ) / A ) ) ) |
112 |
3
|
recnd |
|- ( ph -> B e. CC ) |
113 |
1 112
|
mulcld |
|- ( ph -> ( A x. B ) e. CC ) |
114 |
113
|
coscld |
|- ( ph -> ( cos ` ( A x. B ) ) e. CC ) |
115 |
114 1 2
|
divnegd |
|- ( ph -> -u ( ( cos ` ( A x. B ) ) / A ) = ( -u ( cos ` ( A x. B ) ) / A ) ) |
116 |
115
|
eqcomd |
|- ( ph -> ( -u ( cos ` ( A x. B ) ) / A ) = -u ( ( cos ` ( A x. B ) ) / A ) ) |
117 |
116
|
oveq2d |
|- ( ph -> ( ( -u ( cos ` ( A x. C ) ) / A ) - ( -u ( cos ` ( A x. B ) ) / A ) ) = ( ( -u ( cos ` ( A x. C ) ) / A ) - -u ( ( cos ` ( A x. B ) ) / A ) ) ) |
118 |
4
|
recnd |
|- ( ph -> C e. CC ) |
119 |
1 118
|
mulcld |
|- ( ph -> ( A x. C ) e. CC ) |
120 |
119
|
coscld |
|- ( ph -> ( cos ` ( A x. C ) ) e. CC ) |
121 |
120
|
negcld |
|- ( ph -> -u ( cos ` ( A x. C ) ) e. CC ) |
122 |
121 1 2
|
divcld |
|- ( ph -> ( -u ( cos ` ( A x. C ) ) / A ) e. CC ) |
123 |
114 1 2
|
divcld |
|- ( ph -> ( ( cos ` ( A x. B ) ) / A ) e. CC ) |
124 |
122 123
|
subnegd |
|- ( ph -> ( ( -u ( cos ` ( A x. C ) ) / A ) - -u ( ( cos ` ( A x. B ) ) / A ) ) = ( ( -u ( cos ` ( A x. C ) ) / A ) + ( ( cos ` ( A x. B ) ) / A ) ) ) |
125 |
111 117 124
|
3eqtrd |
|- ( ph -> ( ( ( y e. ( B [,] C ) |-> ( -u ( cos ` ( A x. y ) ) / A ) ) ` C ) - ( ( y e. ( B [,] C ) |-> ( -u ( cos ` ( A x. y ) ) / A ) ) ` B ) ) = ( ( -u ( cos ` ( A x. C ) ) / A ) + ( ( cos ` ( A x. B ) ) / A ) ) ) |
126 |
122 123
|
addcomd |
|- ( ph -> ( ( -u ( cos ` ( A x. C ) ) / A ) + ( ( cos ` ( A x. B ) ) / A ) ) = ( ( ( cos ` ( A x. B ) ) / A ) + ( -u ( cos ` ( A x. C ) ) / A ) ) ) |
127 |
120 1 2
|
divnegd |
|- ( ph -> -u ( ( cos ` ( A x. C ) ) / A ) = ( -u ( cos ` ( A x. C ) ) / A ) ) |
128 |
127
|
eqcomd |
|- ( ph -> ( -u ( cos ` ( A x. C ) ) / A ) = -u ( ( cos ` ( A x. C ) ) / A ) ) |
129 |
128
|
oveq2d |
|- ( ph -> ( ( ( cos ` ( A x. B ) ) / A ) + ( -u ( cos ` ( A x. C ) ) / A ) ) = ( ( ( cos ` ( A x. B ) ) / A ) + -u ( ( cos ` ( A x. C ) ) / A ) ) ) |
130 |
120 1 2
|
divcld |
|- ( ph -> ( ( cos ` ( A x. C ) ) / A ) e. CC ) |
131 |
123 130
|
negsubd |
|- ( ph -> ( ( ( cos ` ( A x. B ) ) / A ) + -u ( ( cos ` ( A x. C ) ) / A ) ) = ( ( ( cos ` ( A x. B ) ) / A ) - ( ( cos ` ( A x. C ) ) / A ) ) ) |
132 |
114 120 1 2
|
divsubdird |
|- ( ph -> ( ( ( cos ` ( A x. B ) ) - ( cos ` ( A x. C ) ) ) / A ) = ( ( ( cos ` ( A x. B ) ) / A ) - ( ( cos ` ( A x. C ) ) / A ) ) ) |
133 |
132
|
eqcomd |
|- ( ph -> ( ( ( cos ` ( A x. B ) ) / A ) - ( ( cos ` ( A x. C ) ) / A ) ) = ( ( ( cos ` ( A x. B ) ) - ( cos ` ( A x. C ) ) ) / A ) ) |
134 |
129 131 133
|
3eqtrd |
|- ( ph -> ( ( ( cos ` ( A x. B ) ) / A ) + ( -u ( cos ` ( A x. C ) ) / A ) ) = ( ( ( cos ` ( A x. B ) ) - ( cos ` ( A x. C ) ) ) / A ) ) |
135 |
125 126 134
|
3eqtrd |
|- ( ph -> ( ( ( y e. ( B [,] C ) |-> ( -u ( cos ` ( A x. y ) ) / A ) ) ` C ) - ( ( y e. ( B [,] C ) |-> ( -u ( cos ` ( A x. y ) ) / A ) ) ` B ) ) = ( ( ( cos ` ( A x. B ) ) - ( cos ` ( A x. C ) ) ) / A ) ) |
136 |
47 89 135
|
3eqtrd |
|- ( ph -> S. ( B (,) C ) ( sin ` ( A x. x ) ) _d x = ( ( ( cos ` ( A x. B ) ) - ( cos ` ( A x. C ) ) ) / A ) ) |