Step |
Hyp |
Ref |
Expression |
1 |
|
itgsinexp.1 |
|- I = ( n e. NN0 |-> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ n ) _d x ) |
2 |
|
itgsinexp.2 |
|- ( ph -> N e. ( ZZ>= ` 2 ) ) |
3 |
|
eluzelz |
|- ( N e. ( ZZ>= ` 2 ) -> N e. ZZ ) |
4 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
5 |
2 3 4
|
3syl |
|- ( ph -> N e. CC ) |
6 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
7 |
5 6
|
npcand |
|- ( ph -> ( ( N - 1 ) + 1 ) = N ) |
8 |
7
|
eqcomd |
|- ( ph -> N = ( ( N - 1 ) + 1 ) ) |
9 |
8
|
oveq1d |
|- ( ph -> ( N x. ( I ` N ) ) = ( ( ( N - 1 ) + 1 ) x. ( I ` N ) ) ) |
10 |
|
uz2m1nn |
|- ( N e. ( ZZ>= ` 2 ) -> ( N - 1 ) e. NN ) |
11 |
2 10
|
syl |
|- ( ph -> ( N - 1 ) e. NN ) |
12 |
11
|
nncnd |
|- ( ph -> ( N - 1 ) e. CC ) |
13 |
1
|
a1i |
|- ( ph -> I = ( n e. NN0 |-> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ n ) _d x ) ) |
14 |
|
oveq2 |
|- ( n = N -> ( ( sin ` x ) ^ n ) = ( ( sin ` x ) ^ N ) ) |
15 |
14
|
ad2antlr |
|- ( ( ( ph /\ n = N ) /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ n ) = ( ( sin ` x ) ^ N ) ) |
16 |
15
|
itgeq2dv |
|- ( ( ph /\ n = N ) -> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ n ) _d x = S. ( 0 (,) _pi ) ( ( sin ` x ) ^ N ) _d x ) |
17 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
18 |
|
npcan |
|- ( ( N e. CC /\ 2 e. CC ) -> ( ( N - 2 ) + 2 ) = N ) |
19 |
18
|
eqcomd |
|- ( ( N e. CC /\ 2 e. CC ) -> N = ( ( N - 2 ) + 2 ) ) |
20 |
5 17 19
|
syl2anc |
|- ( ph -> N = ( ( N - 2 ) + 2 ) ) |
21 |
|
uznn0sub |
|- ( N e. ( ZZ>= ` 2 ) -> ( N - 2 ) e. NN0 ) |
22 |
2 21
|
syl |
|- ( ph -> ( N - 2 ) e. NN0 ) |
23 |
|
2nn0 |
|- 2 e. NN0 |
24 |
23
|
a1i |
|- ( ph -> 2 e. NN0 ) |
25 |
22 24
|
nn0addcld |
|- ( ph -> ( ( N - 2 ) + 2 ) e. NN0 ) |
26 |
20 25
|
eqeltrd |
|- ( ph -> N e. NN0 ) |
27 |
|
itgex |
|- S. ( 0 (,) _pi ) ( ( sin ` x ) ^ N ) _d x e. _V |
28 |
27
|
a1i |
|- ( ph -> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ N ) _d x e. _V ) |
29 |
13 16 26 28
|
fvmptd |
|- ( ph -> ( I ` N ) = S. ( 0 (,) _pi ) ( ( sin ` x ) ^ N ) _d x ) |
30 |
|
ioosscn |
|- ( 0 (,) _pi ) C_ CC |
31 |
30
|
sseli |
|- ( x e. ( 0 (,) _pi ) -> x e. CC ) |
32 |
31
|
sincld |
|- ( x e. ( 0 (,) _pi ) -> ( sin ` x ) e. CC ) |
33 |
32
|
adantl |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( sin ` x ) e. CC ) |
34 |
26
|
adantr |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> N e. NN0 ) |
35 |
33 34
|
expcld |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ N ) e. CC ) |
36 |
|
ioossicc |
|- ( 0 (,) _pi ) C_ ( 0 [,] _pi ) |
37 |
36
|
a1i |
|- ( ph -> ( 0 (,) _pi ) C_ ( 0 [,] _pi ) ) |
38 |
|
ioombl |
|- ( 0 (,) _pi ) e. dom vol |
39 |
38
|
a1i |
|- ( ph -> ( 0 (,) _pi ) e. dom vol ) |
40 |
|
0re |
|- 0 e. RR |
41 |
|
pire |
|- _pi e. RR |
42 |
|
iccssre |
|- ( ( 0 e. RR /\ _pi e. RR ) -> ( 0 [,] _pi ) C_ RR ) |
43 |
40 41 42
|
mp2an |
|- ( 0 [,] _pi ) C_ RR |
44 |
|
ax-resscn |
|- RR C_ CC |
45 |
43 44
|
sstri |
|- ( 0 [,] _pi ) C_ CC |
46 |
45
|
sseli |
|- ( x e. ( 0 [,] _pi ) -> x e. CC ) |
47 |
46
|
sincld |
|- ( x e. ( 0 [,] _pi ) -> ( sin ` x ) e. CC ) |
48 |
47
|
adantl |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( sin ` x ) e. CC ) |
49 |
26
|
adantr |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> N e. NN0 ) |
50 |
48 49
|
expcld |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( ( sin ` x ) ^ N ) e. CC ) |
51 |
40
|
a1i |
|- ( ph -> 0 e. RR ) |
52 |
41
|
a1i |
|- ( ph -> _pi e. RR ) |
53 |
46
|
adantl |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> x e. CC ) |
54 |
|
eqid |
|- ( x e. CC |-> ( ( sin ` x ) ^ N ) ) = ( x e. CC |-> ( ( sin ` x ) ^ N ) ) |
55 |
54
|
fvmpt2 |
|- ( ( x e. CC /\ ( ( sin ` x ) ^ N ) e. CC ) -> ( ( x e. CC |-> ( ( sin ` x ) ^ N ) ) ` x ) = ( ( sin ` x ) ^ N ) ) |
56 |
53 50 55
|
syl2anc |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( ( x e. CC |-> ( ( sin ` x ) ^ N ) ) ` x ) = ( ( sin ` x ) ^ N ) ) |
57 |
56
|
eqcomd |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( ( sin ` x ) ^ N ) = ( ( x e. CC |-> ( ( sin ` x ) ^ N ) ) ` x ) ) |
58 |
57
|
mpteq2dva |
|- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( sin ` x ) ^ N ) ) = ( x e. ( 0 [,] _pi ) |-> ( ( x e. CC |-> ( ( sin ` x ) ^ N ) ) ` x ) ) ) |
59 |
|
nfmpt1 |
|- F/_ x ( x e. CC |-> ( ( sin ` x ) ^ N ) ) |
60 |
|
nfcv |
|- F/_ x sin |
61 |
|
sincn |
|- sin e. ( CC -cn-> CC ) |
62 |
61
|
a1i |
|- ( ph -> sin e. ( CC -cn-> CC ) ) |
63 |
60 62 26
|
expcnfg |
|- ( ph -> ( x e. CC |-> ( ( sin ` x ) ^ N ) ) e. ( CC -cn-> CC ) ) |
64 |
45
|
a1i |
|- ( ph -> ( 0 [,] _pi ) C_ CC ) |
65 |
59 63 64
|
cncfmptss |
|- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( x e. CC |-> ( ( sin ` x ) ^ N ) ) ` x ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) |
66 |
58 65
|
eqeltrd |
|- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( sin ` x ) ^ N ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) |
67 |
|
cniccibl |
|- ( ( 0 e. RR /\ _pi e. RR /\ ( x e. ( 0 [,] _pi ) |-> ( ( sin ` x ) ^ N ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) -> ( x e. ( 0 [,] _pi ) |-> ( ( sin ` x ) ^ N ) ) e. L^1 ) |
68 |
51 52 66 67
|
syl3anc |
|- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( sin ` x ) ^ N ) ) e. L^1 ) |
69 |
37 39 50 68
|
iblss |
|- ( ph -> ( x e. ( 0 (,) _pi ) |-> ( ( sin ` x ) ^ N ) ) e. L^1 ) |
70 |
35 69
|
itgcl |
|- ( ph -> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ N ) _d x e. CC ) |
71 |
29 70
|
eqeltrd |
|- ( ph -> ( I ` N ) e. CC ) |
72 |
12 71
|
adddirp1d |
|- ( ph -> ( ( ( N - 1 ) + 1 ) x. ( I ` N ) ) = ( ( ( N - 1 ) x. ( I ` N ) ) + ( I ` N ) ) ) |
73 |
|
eluz2b2 |
|- ( N e. ( ZZ>= ` 2 ) <-> ( N e. NN /\ 1 < N ) ) |
74 |
2 73
|
sylib |
|- ( ph -> ( N e. NN /\ 1 < N ) ) |
75 |
74
|
simpld |
|- ( ph -> N e. NN ) |
76 |
|
expm1t |
|- ( ( ( sin ` x ) e. CC /\ N e. NN ) -> ( ( sin ` x ) ^ N ) = ( ( ( sin ` x ) ^ ( N - 1 ) ) x. ( sin ` x ) ) ) |
77 |
32 75 76
|
syl2anr |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ N ) = ( ( ( sin ` x ) ^ ( N - 1 ) ) x. ( sin ` x ) ) ) |
78 |
77
|
itgeq2dv |
|- ( ph -> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ N ) _d x = S. ( 0 (,) _pi ) ( ( ( sin ` x ) ^ ( N - 1 ) ) x. ( sin ` x ) ) _d x ) |
79 |
|
eqid |
|- ( x e. CC |-> ( ( sin ` x ) ^ ( N - 1 ) ) ) = ( x e. CC |-> ( ( sin ` x ) ^ ( N - 1 ) ) ) |
80 |
|
eqid |
|- ( x e. CC |-> -u ( cos ` x ) ) = ( x e. CC |-> -u ( cos ` x ) ) |
81 |
|
eqid |
|- ( x e. CC |-> ( ( ( N - 1 ) x. ( ( sin ` x ) ^ ( ( N - 1 ) - 1 ) ) ) x. ( cos ` x ) ) ) = ( x e. CC |-> ( ( ( N - 1 ) x. ( ( sin ` x ) ^ ( ( N - 1 ) - 1 ) ) ) x. ( cos ` x ) ) ) |
82 |
|
eqid |
|- ( x e. CC |-> ( ( ( sin ` x ) ^ ( N - 1 ) ) x. ( sin ` x ) ) ) = ( x e. CC |-> ( ( ( sin ` x ) ^ ( N - 1 ) ) x. ( sin ` x ) ) ) |
83 |
|
eqid |
|- ( x e. CC |-> ( ( ( ( N - 1 ) x. ( ( sin ` x ) ^ ( ( N - 1 ) - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) ) = ( x e. CC |-> ( ( ( ( N - 1 ) x. ( ( sin ` x ) ^ ( ( N - 1 ) - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) ) |
84 |
|
eqid |
|- ( x e. CC |-> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( ( N - 1 ) - 1 ) ) ) ) = ( x e. CC |-> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( ( N - 1 ) - 1 ) ) ) ) |
85 |
79 80 81 82 83 84 11
|
itgsinexplem1 |
|- ( ph -> S. ( 0 (,) _pi ) ( ( ( sin ` x ) ^ ( N - 1 ) ) x. ( sin ` x ) ) _d x = ( ( N - 1 ) x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( ( N - 1 ) - 1 ) ) ) _d x ) ) |
86 |
5 6 6
|
subsub4d |
|- ( ph -> ( ( N - 1 ) - 1 ) = ( N - ( 1 + 1 ) ) ) |
87 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
88 |
87
|
a1i |
|- ( ph -> ( 1 + 1 ) = 2 ) |
89 |
88
|
oveq2d |
|- ( ph -> ( N - ( 1 + 1 ) ) = ( N - 2 ) ) |
90 |
86 89
|
eqtrd |
|- ( ph -> ( ( N - 1 ) - 1 ) = ( N - 2 ) ) |
91 |
90
|
adantr |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( N - 1 ) - 1 ) = ( N - 2 ) ) |
92 |
91
|
oveq2d |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ ( ( N - 1 ) - 1 ) ) = ( ( sin ` x ) ^ ( N - 2 ) ) ) |
93 |
92
|
oveq2d |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( ( N - 1 ) - 1 ) ) ) = ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 2 ) ) ) ) |
94 |
93
|
itgeq2dv |
|- ( ph -> S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( ( N - 1 ) - 1 ) ) ) _d x = S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 2 ) ) ) _d x ) |
95 |
94
|
oveq2d |
|- ( ph -> ( ( N - 1 ) x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( ( N - 1 ) - 1 ) ) ) _d x ) = ( ( N - 1 ) x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 2 ) ) ) _d x ) ) |
96 |
|
sincossq |
|- ( x e. CC -> ( ( ( sin ` x ) ^ 2 ) + ( ( cos ` x ) ^ 2 ) ) = 1 ) |
97 |
|
1cnd |
|- ( x e. CC -> 1 e. CC ) |
98 |
|
sincl |
|- ( x e. CC -> ( sin ` x ) e. CC ) |
99 |
98
|
sqcld |
|- ( x e. CC -> ( ( sin ` x ) ^ 2 ) e. CC ) |
100 |
|
coscl |
|- ( x e. CC -> ( cos ` x ) e. CC ) |
101 |
100
|
sqcld |
|- ( x e. CC -> ( ( cos ` x ) ^ 2 ) e. CC ) |
102 |
97 99 101
|
subaddd |
|- ( x e. CC -> ( ( 1 - ( ( sin ` x ) ^ 2 ) ) = ( ( cos ` x ) ^ 2 ) <-> ( ( ( sin ` x ) ^ 2 ) + ( ( cos ` x ) ^ 2 ) ) = 1 ) ) |
103 |
96 102
|
mpbird |
|- ( x e. CC -> ( 1 - ( ( sin ` x ) ^ 2 ) ) = ( ( cos ` x ) ^ 2 ) ) |
104 |
103
|
eqcomd |
|- ( x e. CC -> ( ( cos ` x ) ^ 2 ) = ( 1 - ( ( sin ` x ) ^ 2 ) ) ) |
105 |
31 104
|
syl |
|- ( x e. ( 0 (,) _pi ) -> ( ( cos ` x ) ^ 2 ) = ( 1 - ( ( sin ` x ) ^ 2 ) ) ) |
106 |
105
|
oveq1d |
|- ( x e. ( 0 (,) _pi ) -> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 2 ) ) ) = ( ( 1 - ( ( sin ` x ) ^ 2 ) ) x. ( ( sin ` x ) ^ ( N - 2 ) ) ) ) |
107 |
106
|
adantl |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 2 ) ) ) = ( ( 1 - ( ( sin ` x ) ^ 2 ) ) x. ( ( sin ` x ) ^ ( N - 2 ) ) ) ) |
108 |
107
|
itgeq2dv |
|- ( ph -> S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 2 ) ) ) _d x = S. ( 0 (,) _pi ) ( ( 1 - ( ( sin ` x ) ^ 2 ) ) x. ( ( sin ` x ) ^ ( N - 2 ) ) ) _d x ) |
109 |
|
1cnd |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> 1 e. CC ) |
110 |
32
|
sqcld |
|- ( x e. ( 0 (,) _pi ) -> ( ( sin ` x ) ^ 2 ) e. CC ) |
111 |
110
|
adantl |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ 2 ) e. CC ) |
112 |
90
|
eqcomd |
|- ( ph -> ( N - 2 ) = ( ( N - 1 ) - 1 ) ) |
113 |
|
nnm1nn0 |
|- ( ( N - 1 ) e. NN -> ( ( N - 1 ) - 1 ) e. NN0 ) |
114 |
11 113
|
syl |
|- ( ph -> ( ( N - 1 ) - 1 ) e. NN0 ) |
115 |
112 114
|
eqeltrd |
|- ( ph -> ( N - 2 ) e. NN0 ) |
116 |
115
|
adantr |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( N - 2 ) e. NN0 ) |
117 |
33 116
|
expcld |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ ( N - 2 ) ) e. CC ) |
118 |
109 111 117
|
subdird |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( 1 - ( ( sin ` x ) ^ 2 ) ) x. ( ( sin ` x ) ^ ( N - 2 ) ) ) = ( ( 1 x. ( ( sin ` x ) ^ ( N - 2 ) ) ) - ( ( ( sin ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 2 ) ) ) ) ) |
119 |
117
|
mulid2d |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( 1 x. ( ( sin ` x ) ^ ( N - 2 ) ) ) = ( ( sin ` x ) ^ ( N - 2 ) ) ) |
120 |
23
|
a1i |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> 2 e. NN0 ) |
121 |
33 116 120
|
expaddd |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ ( 2 + ( N - 2 ) ) ) = ( ( ( sin ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 2 ) ) ) ) |
122 |
17 5
|
pncan3d |
|- ( ph -> ( 2 + ( N - 2 ) ) = N ) |
123 |
122
|
oveq2d |
|- ( ph -> ( ( sin ` x ) ^ ( 2 + ( N - 2 ) ) ) = ( ( sin ` x ) ^ N ) ) |
124 |
123
|
adantr |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ ( 2 + ( N - 2 ) ) ) = ( ( sin ` x ) ^ N ) ) |
125 |
121 124
|
eqtr3d |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( ( sin ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 2 ) ) ) = ( ( sin ` x ) ^ N ) ) |
126 |
119 125
|
oveq12d |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( 1 x. ( ( sin ` x ) ^ ( N - 2 ) ) ) - ( ( ( sin ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 2 ) ) ) ) = ( ( ( sin ` x ) ^ ( N - 2 ) ) - ( ( sin ` x ) ^ N ) ) ) |
127 |
118 126
|
eqtrd |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( 1 - ( ( sin ` x ) ^ 2 ) ) x. ( ( sin ` x ) ^ ( N - 2 ) ) ) = ( ( ( sin ` x ) ^ ( N - 2 ) ) - ( ( sin ` x ) ^ N ) ) ) |
128 |
127
|
itgeq2dv |
|- ( ph -> S. ( 0 (,) _pi ) ( ( 1 - ( ( sin ` x ) ^ 2 ) ) x. ( ( sin ` x ) ^ ( N - 2 ) ) ) _d x = S. ( 0 (,) _pi ) ( ( ( sin ` x ) ^ ( N - 2 ) ) - ( ( sin ` x ) ^ N ) ) _d x ) |
129 |
115
|
adantr |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( N - 2 ) e. NN0 ) |
130 |
48 129
|
expcld |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( ( sin ` x ) ^ ( N - 2 ) ) e. CC ) |
131 |
|
eqid |
|- ( x e. CC |-> ( ( sin ` x ) ^ ( N - 2 ) ) ) = ( x e. CC |-> ( ( sin ` x ) ^ ( N - 2 ) ) ) |
132 |
131
|
fvmpt2 |
|- ( ( x e. CC /\ ( ( sin ` x ) ^ ( N - 2 ) ) e. CC ) -> ( ( x e. CC |-> ( ( sin ` x ) ^ ( N - 2 ) ) ) ` x ) = ( ( sin ` x ) ^ ( N - 2 ) ) ) |
133 |
53 130 132
|
syl2anc |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( ( x e. CC |-> ( ( sin ` x ) ^ ( N - 2 ) ) ) ` x ) = ( ( sin ` x ) ^ ( N - 2 ) ) ) |
134 |
133
|
eqcomd |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( ( sin ` x ) ^ ( N - 2 ) ) = ( ( x e. CC |-> ( ( sin ` x ) ^ ( N - 2 ) ) ) ` x ) ) |
135 |
134
|
mpteq2dva |
|- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( sin ` x ) ^ ( N - 2 ) ) ) = ( x e. ( 0 [,] _pi ) |-> ( ( x e. CC |-> ( ( sin ` x ) ^ ( N - 2 ) ) ) ` x ) ) ) |
136 |
|
nfmpt1 |
|- F/_ x ( x e. CC |-> ( ( sin ` x ) ^ ( N - 2 ) ) ) |
137 |
60 62 115
|
expcnfg |
|- ( ph -> ( x e. CC |-> ( ( sin ` x ) ^ ( N - 2 ) ) ) e. ( CC -cn-> CC ) ) |
138 |
136 137 64
|
cncfmptss |
|- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( x e. CC |-> ( ( sin ` x ) ^ ( N - 2 ) ) ) ` x ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) |
139 |
135 138
|
eqeltrd |
|- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( sin ` x ) ^ ( N - 2 ) ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) |
140 |
|
cniccibl |
|- ( ( 0 e. RR /\ _pi e. RR /\ ( x e. ( 0 [,] _pi ) |-> ( ( sin ` x ) ^ ( N - 2 ) ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) -> ( x e. ( 0 [,] _pi ) |-> ( ( sin ` x ) ^ ( N - 2 ) ) ) e. L^1 ) |
141 |
51 52 139 140
|
syl3anc |
|- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( sin ` x ) ^ ( N - 2 ) ) ) e. L^1 ) |
142 |
37 39 130 141
|
iblss |
|- ( ph -> ( x e. ( 0 (,) _pi ) |-> ( ( sin ` x ) ^ ( N - 2 ) ) ) e. L^1 ) |
143 |
117 142 35 69
|
itgsub |
|- ( ph -> S. ( 0 (,) _pi ) ( ( ( sin ` x ) ^ ( N - 2 ) ) - ( ( sin ` x ) ^ N ) ) _d x = ( S. ( 0 (,) _pi ) ( ( sin ` x ) ^ ( N - 2 ) ) _d x - S. ( 0 (,) _pi ) ( ( sin ` x ) ^ N ) _d x ) ) |
144 |
108 128 143
|
3eqtrd |
|- ( ph -> S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 2 ) ) ) _d x = ( S. ( 0 (,) _pi ) ( ( sin ` x ) ^ ( N - 2 ) ) _d x - S. ( 0 (,) _pi ) ( ( sin ` x ) ^ N ) _d x ) ) |
145 |
144
|
oveq2d |
|- ( ph -> ( ( N - 1 ) x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 2 ) ) ) _d x ) = ( ( N - 1 ) x. ( S. ( 0 (,) _pi ) ( ( sin ` x ) ^ ( N - 2 ) ) _d x - S. ( 0 (,) _pi ) ( ( sin ` x ) ^ N ) _d x ) ) ) |
146 |
85 95 145
|
3eqtrd |
|- ( ph -> S. ( 0 (,) _pi ) ( ( ( sin ` x ) ^ ( N - 1 ) ) x. ( sin ` x ) ) _d x = ( ( N - 1 ) x. ( S. ( 0 (,) _pi ) ( ( sin ` x ) ^ ( N - 2 ) ) _d x - S. ( 0 (,) _pi ) ( ( sin ` x ) ^ N ) _d x ) ) ) |
147 |
29 78 146
|
3eqtrd |
|- ( ph -> ( I ` N ) = ( ( N - 1 ) x. ( S. ( 0 (,) _pi ) ( ( sin ` x ) ^ ( N - 2 ) ) _d x - S. ( 0 (,) _pi ) ( ( sin ` x ) ^ N ) _d x ) ) ) |
148 |
|
oveq2 |
|- ( n = ( N - 2 ) -> ( ( sin ` x ) ^ n ) = ( ( sin ` x ) ^ ( N - 2 ) ) ) |
149 |
148
|
adantr |
|- ( ( n = ( N - 2 ) /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ n ) = ( ( sin ` x ) ^ ( N - 2 ) ) ) |
150 |
149
|
itgeq2dv |
|- ( n = ( N - 2 ) -> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ n ) _d x = S. ( 0 (,) _pi ) ( ( sin ` x ) ^ ( N - 2 ) ) _d x ) |
151 |
|
itgex |
|- S. ( 0 (,) _pi ) ( ( sin ` x ) ^ ( N - 2 ) ) _d x e. _V |
152 |
151
|
a1i |
|- ( ph -> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ ( N - 2 ) ) _d x e. _V ) |
153 |
1 150 115 152
|
fvmptd3 |
|- ( ph -> ( I ` ( N - 2 ) ) = S. ( 0 (,) _pi ) ( ( sin ` x ) ^ ( N - 2 ) ) _d x ) |
154 |
153 29
|
oveq12d |
|- ( ph -> ( ( I ` ( N - 2 ) ) - ( I ` N ) ) = ( S. ( 0 (,) _pi ) ( ( sin ` x ) ^ ( N - 2 ) ) _d x - S. ( 0 (,) _pi ) ( ( sin ` x ) ^ N ) _d x ) ) |
155 |
154
|
oveq2d |
|- ( ph -> ( ( N - 1 ) x. ( ( I ` ( N - 2 ) ) - ( I ` N ) ) ) = ( ( N - 1 ) x. ( S. ( 0 (,) _pi ) ( ( sin ` x ) ^ ( N - 2 ) ) _d x - S. ( 0 (,) _pi ) ( ( sin ` x ) ^ N ) _d x ) ) ) |
156 |
117 142
|
itgcl |
|- ( ph -> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ ( N - 2 ) ) _d x e. CC ) |
157 |
153 156
|
eqeltrd |
|- ( ph -> ( I ` ( N - 2 ) ) e. CC ) |
158 |
12 157 71
|
subdid |
|- ( ph -> ( ( N - 1 ) x. ( ( I ` ( N - 2 ) ) - ( I ` N ) ) ) = ( ( ( N - 1 ) x. ( I ` ( N - 2 ) ) ) - ( ( N - 1 ) x. ( I ` N ) ) ) ) |
159 |
147 155 158
|
3eqtr2d |
|- ( ph -> ( I ` N ) = ( ( ( N - 1 ) x. ( I ` ( N - 2 ) ) ) - ( ( N - 1 ) x. ( I ` N ) ) ) ) |
160 |
159
|
eqcomd |
|- ( ph -> ( ( ( N - 1 ) x. ( I ` ( N - 2 ) ) ) - ( ( N - 1 ) x. ( I ` N ) ) ) = ( I ` N ) ) |
161 |
12 157
|
mulcld |
|- ( ph -> ( ( N - 1 ) x. ( I ` ( N - 2 ) ) ) e. CC ) |
162 |
12 71
|
mulcld |
|- ( ph -> ( ( N - 1 ) x. ( I ` N ) ) e. CC ) |
163 |
161 162 71
|
subaddd |
|- ( ph -> ( ( ( ( N - 1 ) x. ( I ` ( N - 2 ) ) ) - ( ( N - 1 ) x. ( I ` N ) ) ) = ( I ` N ) <-> ( ( ( N - 1 ) x. ( I ` N ) ) + ( I ` N ) ) = ( ( N - 1 ) x. ( I ` ( N - 2 ) ) ) ) ) |
164 |
160 163
|
mpbid |
|- ( ph -> ( ( ( N - 1 ) x. ( I ` N ) ) + ( I ` N ) ) = ( ( N - 1 ) x. ( I ` ( N - 2 ) ) ) ) |
165 |
9 72 164
|
3eqtrd |
|- ( ph -> ( N x. ( I ` N ) ) = ( ( N - 1 ) x. ( I ` ( N - 2 ) ) ) ) |
166 |
165
|
oveq1d |
|- ( ph -> ( ( N x. ( I ` N ) ) / N ) = ( ( ( N - 1 ) x. ( I ` ( N - 2 ) ) ) / N ) ) |
167 |
75
|
nnne0d |
|- ( ph -> N =/= 0 ) |
168 |
71 5 167
|
divcan3d |
|- ( ph -> ( ( N x. ( I ` N ) ) / N ) = ( I ` N ) ) |
169 |
12 157 5 167
|
div23d |
|- ( ph -> ( ( ( N - 1 ) x. ( I ` ( N - 2 ) ) ) / N ) = ( ( ( N - 1 ) / N ) x. ( I ` ( N - 2 ) ) ) ) |
170 |
166 168 169
|
3eqtr3d |
|- ( ph -> ( I ` N ) = ( ( ( N - 1 ) / N ) x. ( I ` ( N - 2 ) ) ) ) |