Metamath Proof Explorer


Theorem itgsinexplem1

Description: Integration by parts is applied to integrate sin^(N+1). (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Hypotheses itgsinexplem1.1
|- F = ( x e. CC |-> ( ( sin ` x ) ^ N ) )
itgsinexplem1.2
|- G = ( x e. CC |-> -u ( cos ` x ) )
itgsinexplem1.3
|- H = ( x e. CC |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) )
itgsinexplem1.4
|- I = ( x e. CC |-> ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) )
itgsinexplem1.5
|- L = ( x e. CC |-> ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) )
itgsinexplem1.6
|- M = ( x e. CC |-> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) )
itgsinexplem1.7
|- ( ph -> N e. NN )
Assertion itgsinexplem1
|- ( ph -> S. ( 0 (,) _pi ) ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) _d x = ( N x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) _d x ) )

Proof

Step Hyp Ref Expression
1 itgsinexplem1.1
 |-  F = ( x e. CC |-> ( ( sin ` x ) ^ N ) )
2 itgsinexplem1.2
 |-  G = ( x e. CC |-> -u ( cos ` x ) )
3 itgsinexplem1.3
 |-  H = ( x e. CC |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) )
4 itgsinexplem1.4
 |-  I = ( x e. CC |-> ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) )
5 itgsinexplem1.5
 |-  L = ( x e. CC |-> ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) )
6 itgsinexplem1.6
 |-  M = ( x e. CC |-> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) )
7 itgsinexplem1.7
 |-  ( ph -> N e. NN )
8 0m0e0
 |-  ( 0 - 0 ) = 0
9 8 oveq1i
 |-  ( ( 0 - 0 ) - S. ( 0 (,) _pi ) ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) _d x ) = ( 0 - S. ( 0 (,) _pi ) ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) _d x )
10 0re
 |-  0 e. RR
11 10 a1i
 |-  ( ph -> 0 e. RR )
12 pire
 |-  _pi e. RR
13 12 a1i
 |-  ( ph -> _pi e. RR )
14 pipos
 |-  0 < _pi
15 10 12 14 ltleii
 |-  0 <_ _pi
16 15 a1i
 |-  ( ph -> 0 <_ _pi )
17 10 12 pm3.2i
 |-  ( 0 e. RR /\ _pi e. RR )
18 iccssre
 |-  ( ( 0 e. RR /\ _pi e. RR ) -> ( 0 [,] _pi ) C_ RR )
19 17 18 ax-mp
 |-  ( 0 [,] _pi ) C_ RR
20 ax-resscn
 |-  RR C_ CC
21 19 20 sstri
 |-  ( 0 [,] _pi ) C_ CC
22 21 sseli
 |-  ( x e. ( 0 [,] _pi ) -> x e. CC )
23 22 adantl
 |-  ( ( ph /\ x e. ( 0 [,] _pi ) ) -> x e. CC )
24 22 sincld
 |-  ( x e. ( 0 [,] _pi ) -> ( sin ` x ) e. CC )
25 24 adantl
 |-  ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( sin ` x ) e. CC )
26 7 nnnn0d
 |-  ( ph -> N e. NN0 )
27 26 adantr
 |-  ( ( ph /\ x e. ( 0 [,] _pi ) ) -> N e. NN0 )
28 25 27 expcld
 |-  ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( ( sin ` x ) ^ N ) e. CC )
29 1 fvmpt2
 |-  ( ( x e. CC /\ ( ( sin ` x ) ^ N ) e. CC ) -> ( F ` x ) = ( ( sin ` x ) ^ N ) )
30 23 28 29 syl2anc
 |-  ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( F ` x ) = ( ( sin ` x ) ^ N ) )
31 30 eqcomd
 |-  ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( ( sin ` x ) ^ N ) = ( F ` x ) )
32 31 mpteq2dva
 |-  ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( sin ` x ) ^ N ) ) = ( x e. ( 0 [,] _pi ) |-> ( F ` x ) ) )
33 nfmpt1
 |-  F/_ x ( x e. CC |-> ( ( sin ` x ) ^ N ) )
34 1 33 nfcxfr
 |-  F/_ x F
35 nfcv
 |-  F/_ x sin
36 sincn
 |-  sin e. ( CC -cn-> CC )
37 36 a1i
 |-  ( ph -> sin e. ( CC -cn-> CC ) )
38 35 37 26 expcnfg
 |-  ( ph -> ( x e. CC |-> ( ( sin ` x ) ^ N ) ) e. ( CC -cn-> CC ) )
39 1 38 eqeltrid
 |-  ( ph -> F e. ( CC -cn-> CC ) )
40 21 a1i
 |-  ( ph -> ( 0 [,] _pi ) C_ CC )
41 34 39 40 cncfmptss
 |-  ( ph -> ( x e. ( 0 [,] _pi ) |-> ( F ` x ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) )
42 32 41 eqeltrd
 |-  ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( sin ` x ) ^ N ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) )
43 22 coscld
 |-  ( x e. ( 0 [,] _pi ) -> ( cos ` x ) e. CC )
44 43 negcld
 |-  ( x e. ( 0 [,] _pi ) -> -u ( cos ` x ) e. CC )
45 2 fvmpt2
 |-  ( ( x e. CC /\ -u ( cos ` x ) e. CC ) -> ( G ` x ) = -u ( cos ` x ) )
46 22 44 45 syl2anc
 |-  ( x e. ( 0 [,] _pi ) -> ( G ` x ) = -u ( cos ` x ) )
47 46 eqcomd
 |-  ( x e. ( 0 [,] _pi ) -> -u ( cos ` x ) = ( G ` x ) )
48 47 adantl
 |-  ( ( ph /\ x e. ( 0 [,] _pi ) ) -> -u ( cos ` x ) = ( G ` x ) )
49 48 mpteq2dva
 |-  ( ph -> ( x e. ( 0 [,] _pi ) |-> -u ( cos ` x ) ) = ( x e. ( 0 [,] _pi ) |-> ( G ` x ) ) )
50 nfmpt1
 |-  F/_ x ( x e. CC |-> -u ( cos ` x ) )
51 2 50 nfcxfr
 |-  F/_ x G
52 coscn
 |-  cos e. ( CC -cn-> CC )
53 52 a1i
 |-  ( ph -> cos e. ( CC -cn-> CC ) )
54 2 negfcncf
 |-  ( cos e. ( CC -cn-> CC ) -> G e. ( CC -cn-> CC ) )
55 53 54 syl
 |-  ( ph -> G e. ( CC -cn-> CC ) )
56 51 55 40 cncfmptss
 |-  ( ph -> ( x e. ( 0 [,] _pi ) |-> ( G ` x ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) )
57 49 56 eqeltrd
 |-  ( ph -> ( x e. ( 0 [,] _pi ) |-> -u ( cos ` x ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) )
58 ssidd
 |-  ( ph -> CC C_ CC )
59 7 nncnd
 |-  ( ph -> N e. CC )
60 58 59 58 constcncfg
 |-  ( ph -> ( x e. CC |-> N ) e. ( CC -cn-> CC ) )
61 nnm1nn0
 |-  ( N e. NN -> ( N - 1 ) e. NN0 )
62 7 61 syl
 |-  ( ph -> ( N - 1 ) e. NN0 )
63 35 37 62 expcnfg
 |-  ( ph -> ( x e. CC |-> ( ( sin ` x ) ^ ( N - 1 ) ) ) e. ( CC -cn-> CC ) )
64 60 63 mulcncf
 |-  ( ph -> ( x e. CC |-> ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) e. ( CC -cn-> CC ) )
65 cosf
 |-  cos : CC --> CC
66 65 a1i
 |-  ( ph -> cos : CC --> CC )
67 66 feqmptd
 |-  ( ph -> cos = ( x e. CC |-> ( cos ` x ) ) )
68 67 52 eqeltrrdi
 |-  ( ph -> ( x e. CC |-> ( cos ` x ) ) e. ( CC -cn-> CC ) )
69 64 68 mulcncf
 |-  ( ph -> ( x e. CC |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) ) e. ( CC -cn-> CC ) )
70 3 69 eqeltrid
 |-  ( ph -> H e. ( CC -cn-> CC ) )
71 ioosscn
 |-  ( 0 (,) _pi ) C_ CC
72 71 a1i
 |-  ( ph -> ( 0 (,) _pi ) C_ CC )
73 59 adantr
 |-  ( ( ph /\ x e. ( 0 (,) _pi ) ) -> N e. CC )
74 71 sseli
 |-  ( x e. ( 0 (,) _pi ) -> x e. CC )
75 74 sincld
 |-  ( x e. ( 0 (,) _pi ) -> ( sin ` x ) e. CC )
76 75 adantl
 |-  ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( sin ` x ) e. CC )
77 62 adantr
 |-  ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( N - 1 ) e. NN0 )
78 76 77 expcld
 |-  ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ ( N - 1 ) ) e. CC )
79 73 78 mulcld
 |-  ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) e. CC )
80 74 coscld
 |-  ( x e. ( 0 (,) _pi ) -> ( cos ` x ) e. CC )
81 80 adantl
 |-  ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( cos ` x ) e. CC )
82 79 81 mulcld
 |-  ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) e. CC )
83 3 70 72 58 82 cncfmptssg
 |-  ( ph -> ( x e. ( 0 (,) _pi ) |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) ) e. ( ( 0 (,) _pi ) -cn-> CC ) )
84 35 37 72 cncfmptss
 |-  ( ph -> ( x e. ( 0 (,) _pi ) |-> ( sin ` x ) ) e. ( ( 0 (,) _pi ) -cn-> CC ) )
85 ioossicc
 |-  ( 0 (,) _pi ) C_ ( 0 [,] _pi )
86 85 a1i
 |-  ( ph -> ( 0 (,) _pi ) C_ ( 0 [,] _pi ) )
87 ioombl
 |-  ( 0 (,) _pi ) e. dom vol
88 87 a1i
 |-  ( ph -> ( 0 (,) _pi ) e. dom vol )
89 28 25 mulcld
 |-  ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) e. CC )
90 4 fvmpt2
 |-  ( ( x e. CC /\ ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) e. CC ) -> ( I ` x ) = ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) )
91 23 89 90 syl2anc
 |-  ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( I ` x ) = ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) )
92 91 eqcomd
 |-  ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) = ( I ` x ) )
93 92 mpteq2dva
 |-  ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) ) = ( x e. ( 0 [,] _pi ) |-> ( I ` x ) ) )
94 nfmpt1
 |-  F/_ x ( x e. CC |-> ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) )
95 4 94 nfcxfr
 |-  F/_ x I
96 sinf
 |-  sin : CC --> CC
97 96 a1i
 |-  ( ph -> sin : CC --> CC )
98 97 feqmptd
 |-  ( ph -> sin = ( x e. CC |-> ( sin ` x ) ) )
99 98 36 eqeltrrdi
 |-  ( ph -> ( x e. CC |-> ( sin ` x ) ) e. ( CC -cn-> CC ) )
100 38 99 mulcncf
 |-  ( ph -> ( x e. CC |-> ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) ) e. ( CC -cn-> CC ) )
101 4 100 eqeltrid
 |-  ( ph -> I e. ( CC -cn-> CC ) )
102 95 101 40 cncfmptss
 |-  ( ph -> ( x e. ( 0 [,] _pi ) |-> ( I ` x ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) )
103 93 102 eqeltrd
 |-  ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) )
104 cniccibl
 |-  ( ( 0 e. RR /\ _pi e. RR /\ ( x e. ( 0 [,] _pi ) |-> ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) -> ( x e. ( 0 [,] _pi ) |-> ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) ) e. L^1 )
105 11 13 103 104 syl3anc
 |-  ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) ) e. L^1 )
106 86 88 89 105 iblss
 |-  ( ph -> ( x e. ( 0 (,) _pi ) |-> ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) ) e. L^1 )
107 59 adantr
 |-  ( ( ph /\ x e. ( 0 [,] _pi ) ) -> N e. CC )
108 62 adantr
 |-  ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( N - 1 ) e. NN0 )
109 25 108 expcld
 |-  ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( ( sin ` x ) ^ ( N - 1 ) ) e. CC )
110 107 109 mulcld
 |-  ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) e. CC )
111 43 adantl
 |-  ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( cos ` x ) e. CC )
112 110 111 mulcld
 |-  ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) e. CC )
113 44 adantl
 |-  ( ( ph /\ x e. ( 0 [,] _pi ) ) -> -u ( cos ` x ) e. CC )
114 112 113 mulcld
 |-  ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) e. CC )
115 eqid
 |-  ( x e. CC |-> -u ( cos ` x ) ) = ( x e. CC |-> -u ( cos ` x ) )
116 115 negfcncf
 |-  ( cos e. ( CC -cn-> CC ) -> ( x e. CC |-> -u ( cos ` x ) ) e. ( CC -cn-> CC ) )
117 53 116 syl
 |-  ( ph -> ( x e. CC |-> -u ( cos ` x ) ) e. ( CC -cn-> CC ) )
118 69 117 mulcncf
 |-  ( ph -> ( x e. CC |-> ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) ) e. ( CC -cn-> CC ) )
119 5 118 eqeltrid
 |-  ( ph -> L e. ( CC -cn-> CC ) )
120 5 119 40 58 114 cncfmptssg
 |-  ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) )
121 cniccibl
 |-  ( ( 0 e. RR /\ _pi e. RR /\ ( x e. ( 0 [,] _pi ) |-> ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) -> ( x e. ( 0 [,] _pi ) |-> ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) ) e. L^1 )
122 11 13 120 121 syl3anc
 |-  ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) ) e. L^1 )
123 86 88 114 122 iblss
 |-  ( ph -> ( x e. ( 0 (,) _pi ) |-> ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) ) e. L^1 )
124 reelprrecn
 |-  RR e. { RR , CC }
125 124 a1i
 |-  ( ph -> RR e. { RR , CC } )
126 recn
 |-  ( x e. RR -> x e. CC )
127 126 sincld
 |-  ( x e. RR -> ( sin ` x ) e. CC )
128 127 adantl
 |-  ( ( ph /\ x e. RR ) -> ( sin ` x ) e. CC )
129 26 adantr
 |-  ( ( ph /\ x e. RR ) -> N e. NN0 )
130 128 129 expcld
 |-  ( ( ph /\ x e. RR ) -> ( ( sin ` x ) ^ N ) e. CC )
131 59 adantr
 |-  ( ( ph /\ x e. RR ) -> N e. CC )
132 62 adantr
 |-  ( ( ph /\ x e. RR ) -> ( N - 1 ) e. NN0 )
133 128 132 expcld
 |-  ( ( ph /\ x e. RR ) -> ( ( sin ` x ) ^ ( N - 1 ) ) e. CC )
134 131 133 mulcld
 |-  ( ( ph /\ x e. RR ) -> ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) e. CC )
135 126 coscld
 |-  ( x e. RR -> ( cos ` x ) e. CC )
136 135 adantl
 |-  ( ( ph /\ x e. RR ) -> ( cos ` x ) e. CC )
137 134 136 mulcld
 |-  ( ( ph /\ x e. RR ) -> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) e. CC )
138 sincl
 |-  ( x e. CC -> ( sin ` x ) e. CC )
139 138 adantl
 |-  ( ( ph /\ x e. CC ) -> ( sin ` x ) e. CC )
140 26 adantr
 |-  ( ( ph /\ x e. CC ) -> N e. NN0 )
141 139 140 expcld
 |-  ( ( ph /\ x e. CC ) -> ( ( sin ` x ) ^ N ) e. CC )
142 141 1 fmptd
 |-  ( ph -> F : CC --> CC )
143 126 adantl
 |-  ( ( ph /\ x e. RR ) -> x e. CC )
144 elex
 |-  ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) e. CC -> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) e. _V )
145 137 144 syl
 |-  ( ( ph /\ x e. RR ) -> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) e. _V )
146 rabid
 |-  ( x e. { x e. CC | ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) e. _V } <-> ( x e. CC /\ ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) e. _V ) )
147 143 145 146 sylanbrc
 |-  ( ( ph /\ x e. RR ) -> x e. { x e. CC | ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) e. _V } )
148 3 dmmpt
 |-  dom H = { x e. CC | ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) e. _V }
149 147 148 eleqtrrdi
 |-  ( ( ph /\ x e. RR ) -> x e. dom H )
150 149 ex
 |-  ( ph -> ( x e. RR -> x e. dom H ) )
151 150 alrimiv
 |-  ( ph -> A. x ( x e. RR -> x e. dom H ) )
152 nfcv
 |-  F/_ x RR
153 nfmpt1
 |-  F/_ x ( x e. CC |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) )
154 3 153 nfcxfr
 |-  F/_ x H
155 154 nfdm
 |-  F/_ x dom H
156 152 155 dfss2f
 |-  ( RR C_ dom H <-> A. x ( x e. RR -> x e. dom H ) )
157 151 156 sylibr
 |-  ( ph -> RR C_ dom H )
158 7 dvsinexp
 |-  ( ph -> ( CC _D ( x e. CC |-> ( ( sin ` x ) ^ N ) ) ) = ( x e. CC |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) ) )
159 1 oveq2i
 |-  ( CC _D F ) = ( CC _D ( x e. CC |-> ( ( sin ` x ) ^ N ) ) )
160 158 159 3 3eqtr4g
 |-  ( ph -> ( CC _D F ) = H )
161 160 dmeqd
 |-  ( ph -> dom ( CC _D F ) = dom H )
162 157 161 sseqtrrd
 |-  ( ph -> RR C_ dom ( CC _D F ) )
163 dvres3
 |-  ( ( ( RR e. { RR , CC } /\ F : CC --> CC ) /\ ( CC C_ CC /\ RR C_ dom ( CC _D F ) ) ) -> ( RR _D ( F |` RR ) ) = ( ( CC _D F ) |` RR ) )
164 125 142 58 162 163 syl22anc
 |-  ( ph -> ( RR _D ( F |` RR ) ) = ( ( CC _D F ) |` RR ) )
165 1 reseq1i
 |-  ( F |` RR ) = ( ( x e. CC |-> ( ( sin ` x ) ^ N ) ) |` RR )
166 resmpt
 |-  ( RR C_ CC -> ( ( x e. CC |-> ( ( sin ` x ) ^ N ) ) |` RR ) = ( x e. RR |-> ( ( sin ` x ) ^ N ) ) )
167 20 166 ax-mp
 |-  ( ( x e. CC |-> ( ( sin ` x ) ^ N ) ) |` RR ) = ( x e. RR |-> ( ( sin ` x ) ^ N ) )
168 165 167 eqtri
 |-  ( F |` RR ) = ( x e. RR |-> ( ( sin ` x ) ^ N ) )
169 168 oveq2i
 |-  ( RR _D ( F |` RR ) ) = ( RR _D ( x e. RR |-> ( ( sin ` x ) ^ N ) ) )
170 169 a1i
 |-  ( ph -> ( RR _D ( F |` RR ) ) = ( RR _D ( x e. RR |-> ( ( sin ` x ) ^ N ) ) ) )
171 160 reseq1d
 |-  ( ph -> ( ( CC _D F ) |` RR ) = ( H |` RR ) )
172 3 reseq1i
 |-  ( H |` RR ) = ( ( x e. CC |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) ) |` RR )
173 resmpt
 |-  ( RR C_ CC -> ( ( x e. CC |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) ) |` RR ) = ( x e. RR |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) ) )
174 20 173 ax-mp
 |-  ( ( x e. CC |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) ) |` RR ) = ( x e. RR |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) )
175 172 174 eqtri
 |-  ( H |` RR ) = ( x e. RR |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) )
176 171 175 eqtrdi
 |-  ( ph -> ( ( CC _D F ) |` RR ) = ( x e. RR |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) ) )
177 164 170 176 3eqtr3d
 |-  ( ph -> ( RR _D ( x e. RR |-> ( ( sin ` x ) ^ N ) ) ) = ( x e. RR |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) ) )
178 19 a1i
 |-  ( ph -> ( 0 [,] _pi ) C_ RR )
179 eqid
 |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld )
180 179 tgioo2
 |-  ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR )
181 17 a1i
 |-  ( ph -> ( 0 e. RR /\ _pi e. RR ) )
182 iccntr
 |-  ( ( 0 e. RR /\ _pi e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( 0 [,] _pi ) ) = ( 0 (,) _pi ) )
183 181 182 syl
 |-  ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` ( 0 [,] _pi ) ) = ( 0 (,) _pi ) )
184 125 130 137 177 178 180 179 183 dvmptres2
 |-  ( ph -> ( RR _D ( x e. ( 0 [,] _pi ) |-> ( ( sin ` x ) ^ N ) ) ) = ( x e. ( 0 (,) _pi ) |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) ) )
185 135 negcld
 |-  ( x e. RR -> -u ( cos ` x ) e. CC )
186 185 adantl
 |-  ( ( ph /\ x e. RR ) -> -u ( cos ` x ) e. CC )
187 127 negcld
 |-  ( x e. RR -> -u ( sin ` x ) e. CC )
188 187 adantl
 |-  ( ( ph /\ x e. RR ) -> -u ( sin ` x ) e. CC )
189 dvcosre
 |-  ( RR _D ( x e. RR |-> ( cos ` x ) ) ) = ( x e. RR |-> -u ( sin ` x ) )
190 189 a1i
 |-  ( ph -> ( RR _D ( x e. RR |-> ( cos ` x ) ) ) = ( x e. RR |-> -u ( sin ` x ) ) )
191 125 136 188 190 dvmptneg
 |-  ( ph -> ( RR _D ( x e. RR |-> -u ( cos ` x ) ) ) = ( x e. RR |-> -u -u ( sin ` x ) ) )
192 127 negnegd
 |-  ( x e. RR -> -u -u ( sin ` x ) = ( sin ` x ) )
193 192 adantl
 |-  ( ( ph /\ x e. RR ) -> -u -u ( sin ` x ) = ( sin ` x ) )
194 193 mpteq2dva
 |-  ( ph -> ( x e. RR |-> -u -u ( sin ` x ) ) = ( x e. RR |-> ( sin ` x ) ) )
195 191 194 eqtrd
 |-  ( ph -> ( RR _D ( x e. RR |-> -u ( cos ` x ) ) ) = ( x e. RR |-> ( sin ` x ) ) )
196 125 186 128 195 178 180 179 183 dvmptres2
 |-  ( ph -> ( RR _D ( x e. ( 0 [,] _pi ) |-> -u ( cos ` x ) ) ) = ( x e. ( 0 (,) _pi ) |-> ( sin ` x ) ) )
197 fveq2
 |-  ( x = 0 -> ( sin ` x ) = ( sin ` 0 ) )
198 sin0
 |-  ( sin ` 0 ) = 0
199 197 198 eqtrdi
 |-  ( x = 0 -> ( sin ` x ) = 0 )
200 199 oveq1d
 |-  ( x = 0 -> ( ( sin ` x ) ^ N ) = ( 0 ^ N ) )
201 200 adantl
 |-  ( ( ph /\ x = 0 ) -> ( ( sin ` x ) ^ N ) = ( 0 ^ N ) )
202 7 adantr
 |-  ( ( ph /\ x = 0 ) -> N e. NN )
203 202 0expd
 |-  ( ( ph /\ x = 0 ) -> ( 0 ^ N ) = 0 )
204 201 203 eqtrd
 |-  ( ( ph /\ x = 0 ) -> ( ( sin ` x ) ^ N ) = 0 )
205 204 oveq1d
 |-  ( ( ph /\ x = 0 ) -> ( ( ( sin ` x ) ^ N ) x. -u ( cos ` x ) ) = ( 0 x. -u ( cos ` x ) ) )
206 id
 |-  ( x = 0 -> x = 0 )
207 0cn
 |-  0 e. CC
208 206 207 eqeltrdi
 |-  ( x = 0 -> x e. CC )
209 coscl
 |-  ( x e. CC -> ( cos ` x ) e. CC )
210 209 negcld
 |-  ( x e. CC -> -u ( cos ` x ) e. CC )
211 208 210 syl
 |-  ( x = 0 -> -u ( cos ` x ) e. CC )
212 211 adantl
 |-  ( ( ph /\ x = 0 ) -> -u ( cos ` x ) e. CC )
213 212 mul02d
 |-  ( ( ph /\ x = 0 ) -> ( 0 x. -u ( cos ` x ) ) = 0 )
214 205 213 eqtrd
 |-  ( ( ph /\ x = 0 ) -> ( ( ( sin ` x ) ^ N ) x. -u ( cos ` x ) ) = 0 )
215 fveq2
 |-  ( x = _pi -> ( sin ` x ) = ( sin ` _pi ) )
216 sinpi
 |-  ( sin ` _pi ) = 0
217 215 216 eqtrdi
 |-  ( x = _pi -> ( sin ` x ) = 0 )
218 217 oveq1d
 |-  ( x = _pi -> ( ( sin ` x ) ^ N ) = ( 0 ^ N ) )
219 218 adantl
 |-  ( ( ph /\ x = _pi ) -> ( ( sin ` x ) ^ N ) = ( 0 ^ N ) )
220 7 adantr
 |-  ( ( ph /\ x = _pi ) -> N e. NN )
221 220 0expd
 |-  ( ( ph /\ x = _pi ) -> ( 0 ^ N ) = 0 )
222 219 221 eqtrd
 |-  ( ( ph /\ x = _pi ) -> ( ( sin ` x ) ^ N ) = 0 )
223 222 oveq1d
 |-  ( ( ph /\ x = _pi ) -> ( ( ( sin ` x ) ^ N ) x. -u ( cos ` x ) ) = ( 0 x. -u ( cos ` x ) ) )
224 id
 |-  ( x = _pi -> x = _pi )
225 picn
 |-  _pi e. CC
226 224 225 eqeltrdi
 |-  ( x = _pi -> x e. CC )
227 226 coscld
 |-  ( x = _pi -> ( cos ` x ) e. CC )
228 227 negcld
 |-  ( x = _pi -> -u ( cos ` x ) e. CC )
229 228 adantl
 |-  ( ( ph /\ x = _pi ) -> -u ( cos ` x ) e. CC )
230 229 mul02d
 |-  ( ( ph /\ x = _pi ) -> ( 0 x. -u ( cos ` x ) ) = 0 )
231 223 230 eqtrd
 |-  ( ( ph /\ x = _pi ) -> ( ( ( sin ` x ) ^ N ) x. -u ( cos ` x ) ) = 0 )
232 11 13 16 42 57 83 84 106 123 184 196 214 231 itgparts
 |-  ( ph -> S. ( 0 (,) _pi ) ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) _d x = ( ( 0 - 0 ) - S. ( 0 (,) _pi ) ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) _d x ) )
233 df-neg
 |-  -u S. ( 0 (,) _pi ) ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) _d x = ( 0 - S. ( 0 (,) _pi ) ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) _d x )
234 233 a1i
 |-  ( ph -> -u S. ( 0 (,) _pi ) ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) _d x = ( 0 - S. ( 0 (,) _pi ) ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) _d x ) )
235 9 232 234 3eqtr4a
 |-  ( ph -> S. ( 0 (,) _pi ) ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) _d x = -u S. ( 0 (,) _pi ) ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) _d x )
236 79 81 81 mulassd
 |-  ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. ( cos ` x ) ) = ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( ( cos ` x ) x. ( cos ` x ) ) ) )
237 sqval
 |-  ( ( cos ` x ) e. CC -> ( ( cos ` x ) ^ 2 ) = ( ( cos ` x ) x. ( cos ` x ) ) )
238 237 eqcomd
 |-  ( ( cos ` x ) e. CC -> ( ( cos ` x ) x. ( cos ` x ) ) = ( ( cos ` x ) ^ 2 ) )
239 80 238 syl
 |-  ( x e. ( 0 (,) _pi ) -> ( ( cos ` x ) x. ( cos ` x ) ) = ( ( cos ` x ) ^ 2 ) )
240 239 adantl
 |-  ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( cos ` x ) x. ( cos ` x ) ) = ( ( cos ` x ) ^ 2 ) )
241 240 oveq2d
 |-  ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( ( cos ` x ) x. ( cos ` x ) ) ) = ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( ( cos ` x ) ^ 2 ) ) )
242 80 sqcld
 |-  ( x e. ( 0 (,) _pi ) -> ( ( cos ` x ) ^ 2 ) e. CC )
243 242 adantl
 |-  ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( cos ` x ) ^ 2 ) e. CC )
244 73 78 243 mulassd
 |-  ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( ( cos ` x ) ^ 2 ) ) = ( N x. ( ( ( sin ` x ) ^ ( N - 1 ) ) x. ( ( cos ` x ) ^ 2 ) ) ) )
245 241 244 eqtrd
 |-  ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( ( cos ` x ) x. ( cos ` x ) ) ) = ( N x. ( ( ( sin ` x ) ^ ( N - 1 ) ) x. ( ( cos ` x ) ^ 2 ) ) ) )
246 78 243 mulcomd
 |-  ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( ( sin ` x ) ^ ( N - 1 ) ) x. ( ( cos ` x ) ^ 2 ) ) = ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) )
247 246 oveq2d
 |-  ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( N x. ( ( ( sin ` x ) ^ ( N - 1 ) ) x. ( ( cos ` x ) ^ 2 ) ) ) = ( N x. ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) )
248 236 245 247 3eqtrd
 |-  ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. ( cos ` x ) ) = ( N x. ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) )
249 248 negeqd
 |-  ( ( ph /\ x e. ( 0 (,) _pi ) ) -> -u ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. ( cos ` x ) ) = -u ( N x. ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) )
250 82 81 mulneg2d
 |-  ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) = -u ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. ( cos ` x ) ) )
251 243 78 mulcld
 |-  ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) e. CC )
252 73 251 mulneg1d
 |-  ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( -u N x. ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) = -u ( N x. ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) )
253 249 250 252 3eqtr4d
 |-  ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) = ( -u N x. ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) )
254 253 itgeq2dv
 |-  ( ph -> S. ( 0 (,) _pi ) ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) _d x = S. ( 0 (,) _pi ) ( -u N x. ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) _d x )
255 59 negcld
 |-  ( ph -> -u N e. CC )
256 43 sqcld
 |-  ( x e. ( 0 [,] _pi ) -> ( ( cos ` x ) ^ 2 ) e. CC )
257 256 adantl
 |-  ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( ( cos ` x ) ^ 2 ) e. CC )
258 257 109 mulcld
 |-  ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) e. CC )
259 6 fvmpt2
 |-  ( ( x e. CC /\ ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) e. CC ) -> ( M ` x ) = ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) )
260 23 258 259 syl2anc
 |-  ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( M ` x ) = ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) )
261 260 eqcomd
 |-  ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) = ( M ` x ) )
262 261 mpteq2dva
 |-  ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) = ( x e. ( 0 [,] _pi ) |-> ( M ` x ) ) )
263 nfmpt1
 |-  F/_ x ( x e. CC |-> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) )
264 6 263 nfcxfr
 |-  F/_ x M
265 nfcv
 |-  F/_ x cos
266 2nn0
 |-  2 e. NN0
267 266 a1i
 |-  ( ph -> 2 e. NN0 )
268 265 53 267 expcnfg
 |-  ( ph -> ( x e. CC |-> ( ( cos ` x ) ^ 2 ) ) e. ( CC -cn-> CC ) )
269 268 63 mulcncf
 |-  ( ph -> ( x e. CC |-> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) e. ( CC -cn-> CC ) )
270 6 269 eqeltrid
 |-  ( ph -> M e. ( CC -cn-> CC ) )
271 264 270 40 cncfmptss
 |-  ( ph -> ( x e. ( 0 [,] _pi ) |-> ( M ` x ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) )
272 262 271 eqeltrd
 |-  ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) )
273 cniccibl
 |-  ( ( 0 e. RR /\ _pi e. RR /\ ( x e. ( 0 [,] _pi ) |-> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) -> ( x e. ( 0 [,] _pi ) |-> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) e. L^1 )
274 11 13 272 273 syl3anc
 |-  ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) e. L^1 )
275 86 88 258 274 iblss
 |-  ( ph -> ( x e. ( 0 (,) _pi ) |-> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) e. L^1 )
276 255 251 275 itgmulc2
 |-  ( ph -> ( -u N x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) _d x ) = S. ( 0 (,) _pi ) ( -u N x. ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) _d x )
277 254 276 eqtr4d
 |-  ( ph -> S. ( 0 (,) _pi ) ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) _d x = ( -u N x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) _d x ) )
278 277 negeqd
 |-  ( ph -> -u S. ( 0 (,) _pi ) ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) _d x = -u ( -u N x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) _d x ) )
279 235 278 eqtrd
 |-  ( ph -> S. ( 0 (,) _pi ) ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) _d x = -u ( -u N x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) _d x ) )
280 251 275 itgcl
 |-  ( ph -> S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) _d x e. CC )
281 59 280 mulneg1d
 |-  ( ph -> ( -u N x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) _d x ) = -u ( N x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) _d x ) )
282 281 negeqd
 |-  ( ph -> -u ( -u N x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) _d x ) = -u -u ( N x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) _d x ) )
283 59 280 mulcld
 |-  ( ph -> ( N x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) _d x ) e. CC )
284 283 negnegd
 |-  ( ph -> -u -u ( N x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) _d x ) = ( N x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) _d x ) )
285 279 282 284 3eqtrd
 |-  ( ph -> S. ( 0 (,) _pi ) ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) _d x = ( N x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) _d x ) )