Step |
Hyp |
Ref |
Expression |
1 |
|
itgsinexplem1.1 |
|- F = ( x e. CC |-> ( ( sin ` x ) ^ N ) ) |
2 |
|
itgsinexplem1.2 |
|- G = ( x e. CC |-> -u ( cos ` x ) ) |
3 |
|
itgsinexplem1.3 |
|- H = ( x e. CC |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) ) |
4 |
|
itgsinexplem1.4 |
|- I = ( x e. CC |-> ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) ) |
5 |
|
itgsinexplem1.5 |
|- L = ( x e. CC |-> ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) ) |
6 |
|
itgsinexplem1.6 |
|- M = ( x e. CC |-> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) |
7 |
|
itgsinexplem1.7 |
|- ( ph -> N e. NN ) |
8 |
|
0m0e0 |
|- ( 0 - 0 ) = 0 |
9 |
8
|
oveq1i |
|- ( ( 0 - 0 ) - S. ( 0 (,) _pi ) ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) _d x ) = ( 0 - S. ( 0 (,) _pi ) ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) _d x ) |
10 |
|
0re |
|- 0 e. RR |
11 |
10
|
a1i |
|- ( ph -> 0 e. RR ) |
12 |
|
pire |
|- _pi e. RR |
13 |
12
|
a1i |
|- ( ph -> _pi e. RR ) |
14 |
|
pipos |
|- 0 < _pi |
15 |
10 12 14
|
ltleii |
|- 0 <_ _pi |
16 |
15
|
a1i |
|- ( ph -> 0 <_ _pi ) |
17 |
10 12
|
pm3.2i |
|- ( 0 e. RR /\ _pi e. RR ) |
18 |
|
iccssre |
|- ( ( 0 e. RR /\ _pi e. RR ) -> ( 0 [,] _pi ) C_ RR ) |
19 |
17 18
|
ax-mp |
|- ( 0 [,] _pi ) C_ RR |
20 |
|
ax-resscn |
|- RR C_ CC |
21 |
19 20
|
sstri |
|- ( 0 [,] _pi ) C_ CC |
22 |
21
|
sseli |
|- ( x e. ( 0 [,] _pi ) -> x e. CC ) |
23 |
22
|
adantl |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> x e. CC ) |
24 |
22
|
sincld |
|- ( x e. ( 0 [,] _pi ) -> ( sin ` x ) e. CC ) |
25 |
24
|
adantl |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( sin ` x ) e. CC ) |
26 |
7
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
27 |
26
|
adantr |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> N e. NN0 ) |
28 |
25 27
|
expcld |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( ( sin ` x ) ^ N ) e. CC ) |
29 |
1
|
fvmpt2 |
|- ( ( x e. CC /\ ( ( sin ` x ) ^ N ) e. CC ) -> ( F ` x ) = ( ( sin ` x ) ^ N ) ) |
30 |
23 28 29
|
syl2anc |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( F ` x ) = ( ( sin ` x ) ^ N ) ) |
31 |
30
|
eqcomd |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( ( sin ` x ) ^ N ) = ( F ` x ) ) |
32 |
31
|
mpteq2dva |
|- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( sin ` x ) ^ N ) ) = ( x e. ( 0 [,] _pi ) |-> ( F ` x ) ) ) |
33 |
|
nfmpt1 |
|- F/_ x ( x e. CC |-> ( ( sin ` x ) ^ N ) ) |
34 |
1 33
|
nfcxfr |
|- F/_ x F |
35 |
|
nfcv |
|- F/_ x sin |
36 |
|
sincn |
|- sin e. ( CC -cn-> CC ) |
37 |
36
|
a1i |
|- ( ph -> sin e. ( CC -cn-> CC ) ) |
38 |
35 37 26
|
expcnfg |
|- ( ph -> ( x e. CC |-> ( ( sin ` x ) ^ N ) ) e. ( CC -cn-> CC ) ) |
39 |
1 38
|
eqeltrid |
|- ( ph -> F e. ( CC -cn-> CC ) ) |
40 |
21
|
a1i |
|- ( ph -> ( 0 [,] _pi ) C_ CC ) |
41 |
34 39 40
|
cncfmptss |
|- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( F ` x ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) |
42 |
32 41
|
eqeltrd |
|- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( sin ` x ) ^ N ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) |
43 |
22
|
coscld |
|- ( x e. ( 0 [,] _pi ) -> ( cos ` x ) e. CC ) |
44 |
43
|
negcld |
|- ( x e. ( 0 [,] _pi ) -> -u ( cos ` x ) e. CC ) |
45 |
2
|
fvmpt2 |
|- ( ( x e. CC /\ -u ( cos ` x ) e. CC ) -> ( G ` x ) = -u ( cos ` x ) ) |
46 |
22 44 45
|
syl2anc |
|- ( x e. ( 0 [,] _pi ) -> ( G ` x ) = -u ( cos ` x ) ) |
47 |
46
|
eqcomd |
|- ( x e. ( 0 [,] _pi ) -> -u ( cos ` x ) = ( G ` x ) ) |
48 |
47
|
adantl |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> -u ( cos ` x ) = ( G ` x ) ) |
49 |
48
|
mpteq2dva |
|- ( ph -> ( x e. ( 0 [,] _pi ) |-> -u ( cos ` x ) ) = ( x e. ( 0 [,] _pi ) |-> ( G ` x ) ) ) |
50 |
|
nfmpt1 |
|- F/_ x ( x e. CC |-> -u ( cos ` x ) ) |
51 |
2 50
|
nfcxfr |
|- F/_ x G |
52 |
|
coscn |
|- cos e. ( CC -cn-> CC ) |
53 |
52
|
a1i |
|- ( ph -> cos e. ( CC -cn-> CC ) ) |
54 |
2
|
negfcncf |
|- ( cos e. ( CC -cn-> CC ) -> G e. ( CC -cn-> CC ) ) |
55 |
53 54
|
syl |
|- ( ph -> G e. ( CC -cn-> CC ) ) |
56 |
51 55 40
|
cncfmptss |
|- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( G ` x ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) |
57 |
49 56
|
eqeltrd |
|- ( ph -> ( x e. ( 0 [,] _pi ) |-> -u ( cos ` x ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) |
58 |
|
ssidd |
|- ( ph -> CC C_ CC ) |
59 |
7
|
nncnd |
|- ( ph -> N e. CC ) |
60 |
58 59 58
|
constcncfg |
|- ( ph -> ( x e. CC |-> N ) e. ( CC -cn-> CC ) ) |
61 |
|
nnm1nn0 |
|- ( N e. NN -> ( N - 1 ) e. NN0 ) |
62 |
7 61
|
syl |
|- ( ph -> ( N - 1 ) e. NN0 ) |
63 |
35 37 62
|
expcnfg |
|- ( ph -> ( x e. CC |-> ( ( sin ` x ) ^ ( N - 1 ) ) ) e. ( CC -cn-> CC ) ) |
64 |
60 63
|
mulcncf |
|- ( ph -> ( x e. CC |-> ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) e. ( CC -cn-> CC ) ) |
65 |
|
cosf |
|- cos : CC --> CC |
66 |
65
|
a1i |
|- ( ph -> cos : CC --> CC ) |
67 |
66
|
feqmptd |
|- ( ph -> cos = ( x e. CC |-> ( cos ` x ) ) ) |
68 |
67 52
|
eqeltrrdi |
|- ( ph -> ( x e. CC |-> ( cos ` x ) ) e. ( CC -cn-> CC ) ) |
69 |
64 68
|
mulcncf |
|- ( ph -> ( x e. CC |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) ) e. ( CC -cn-> CC ) ) |
70 |
3 69
|
eqeltrid |
|- ( ph -> H e. ( CC -cn-> CC ) ) |
71 |
|
ioosscn |
|- ( 0 (,) _pi ) C_ CC |
72 |
71
|
a1i |
|- ( ph -> ( 0 (,) _pi ) C_ CC ) |
73 |
59
|
adantr |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> N e. CC ) |
74 |
71
|
sseli |
|- ( x e. ( 0 (,) _pi ) -> x e. CC ) |
75 |
74
|
sincld |
|- ( x e. ( 0 (,) _pi ) -> ( sin ` x ) e. CC ) |
76 |
75
|
adantl |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( sin ` x ) e. CC ) |
77 |
62
|
adantr |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( N - 1 ) e. NN0 ) |
78 |
76 77
|
expcld |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ ( N - 1 ) ) e. CC ) |
79 |
73 78
|
mulcld |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) e. CC ) |
80 |
74
|
coscld |
|- ( x e. ( 0 (,) _pi ) -> ( cos ` x ) e. CC ) |
81 |
80
|
adantl |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( cos ` x ) e. CC ) |
82 |
79 81
|
mulcld |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) e. CC ) |
83 |
3 70 72 58 82
|
cncfmptssg |
|- ( ph -> ( x e. ( 0 (,) _pi ) |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) ) e. ( ( 0 (,) _pi ) -cn-> CC ) ) |
84 |
35 37 72
|
cncfmptss |
|- ( ph -> ( x e. ( 0 (,) _pi ) |-> ( sin ` x ) ) e. ( ( 0 (,) _pi ) -cn-> CC ) ) |
85 |
|
ioossicc |
|- ( 0 (,) _pi ) C_ ( 0 [,] _pi ) |
86 |
85
|
a1i |
|- ( ph -> ( 0 (,) _pi ) C_ ( 0 [,] _pi ) ) |
87 |
|
ioombl |
|- ( 0 (,) _pi ) e. dom vol |
88 |
87
|
a1i |
|- ( ph -> ( 0 (,) _pi ) e. dom vol ) |
89 |
28 25
|
mulcld |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) e. CC ) |
90 |
4
|
fvmpt2 |
|- ( ( x e. CC /\ ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) e. CC ) -> ( I ` x ) = ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) ) |
91 |
23 89 90
|
syl2anc |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( I ` x ) = ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) ) |
92 |
91
|
eqcomd |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) = ( I ` x ) ) |
93 |
92
|
mpteq2dva |
|- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) ) = ( x e. ( 0 [,] _pi ) |-> ( I ` x ) ) ) |
94 |
|
nfmpt1 |
|- F/_ x ( x e. CC |-> ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) ) |
95 |
4 94
|
nfcxfr |
|- F/_ x I |
96 |
|
sinf |
|- sin : CC --> CC |
97 |
96
|
a1i |
|- ( ph -> sin : CC --> CC ) |
98 |
97
|
feqmptd |
|- ( ph -> sin = ( x e. CC |-> ( sin ` x ) ) ) |
99 |
98 36
|
eqeltrrdi |
|- ( ph -> ( x e. CC |-> ( sin ` x ) ) e. ( CC -cn-> CC ) ) |
100 |
38 99
|
mulcncf |
|- ( ph -> ( x e. CC |-> ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) ) e. ( CC -cn-> CC ) ) |
101 |
4 100
|
eqeltrid |
|- ( ph -> I e. ( CC -cn-> CC ) ) |
102 |
95 101 40
|
cncfmptss |
|- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( I ` x ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) |
103 |
93 102
|
eqeltrd |
|- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) |
104 |
|
cniccibl |
|- ( ( 0 e. RR /\ _pi e. RR /\ ( x e. ( 0 [,] _pi ) |-> ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) -> ( x e. ( 0 [,] _pi ) |-> ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) ) e. L^1 ) |
105 |
11 13 103 104
|
syl3anc |
|- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) ) e. L^1 ) |
106 |
86 88 89 105
|
iblss |
|- ( ph -> ( x e. ( 0 (,) _pi ) |-> ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) ) e. L^1 ) |
107 |
59
|
adantr |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> N e. CC ) |
108 |
62
|
adantr |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( N - 1 ) e. NN0 ) |
109 |
25 108
|
expcld |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( ( sin ` x ) ^ ( N - 1 ) ) e. CC ) |
110 |
107 109
|
mulcld |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) e. CC ) |
111 |
43
|
adantl |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( cos ` x ) e. CC ) |
112 |
110 111
|
mulcld |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) e. CC ) |
113 |
44
|
adantl |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> -u ( cos ` x ) e. CC ) |
114 |
112 113
|
mulcld |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) e. CC ) |
115 |
|
eqid |
|- ( x e. CC |-> -u ( cos ` x ) ) = ( x e. CC |-> -u ( cos ` x ) ) |
116 |
115
|
negfcncf |
|- ( cos e. ( CC -cn-> CC ) -> ( x e. CC |-> -u ( cos ` x ) ) e. ( CC -cn-> CC ) ) |
117 |
53 116
|
syl |
|- ( ph -> ( x e. CC |-> -u ( cos ` x ) ) e. ( CC -cn-> CC ) ) |
118 |
69 117
|
mulcncf |
|- ( ph -> ( x e. CC |-> ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) ) e. ( CC -cn-> CC ) ) |
119 |
5 118
|
eqeltrid |
|- ( ph -> L e. ( CC -cn-> CC ) ) |
120 |
5 119 40 58 114
|
cncfmptssg |
|- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) |
121 |
|
cniccibl |
|- ( ( 0 e. RR /\ _pi e. RR /\ ( x e. ( 0 [,] _pi ) |-> ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) -> ( x e. ( 0 [,] _pi ) |-> ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) ) e. L^1 ) |
122 |
11 13 120 121
|
syl3anc |
|- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) ) e. L^1 ) |
123 |
86 88 114 122
|
iblss |
|- ( ph -> ( x e. ( 0 (,) _pi ) |-> ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) ) e. L^1 ) |
124 |
|
reelprrecn |
|- RR e. { RR , CC } |
125 |
124
|
a1i |
|- ( ph -> RR e. { RR , CC } ) |
126 |
|
recn |
|- ( x e. RR -> x e. CC ) |
127 |
126
|
sincld |
|- ( x e. RR -> ( sin ` x ) e. CC ) |
128 |
127
|
adantl |
|- ( ( ph /\ x e. RR ) -> ( sin ` x ) e. CC ) |
129 |
26
|
adantr |
|- ( ( ph /\ x e. RR ) -> N e. NN0 ) |
130 |
128 129
|
expcld |
|- ( ( ph /\ x e. RR ) -> ( ( sin ` x ) ^ N ) e. CC ) |
131 |
59
|
adantr |
|- ( ( ph /\ x e. RR ) -> N e. CC ) |
132 |
62
|
adantr |
|- ( ( ph /\ x e. RR ) -> ( N - 1 ) e. NN0 ) |
133 |
128 132
|
expcld |
|- ( ( ph /\ x e. RR ) -> ( ( sin ` x ) ^ ( N - 1 ) ) e. CC ) |
134 |
131 133
|
mulcld |
|- ( ( ph /\ x e. RR ) -> ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) e. CC ) |
135 |
126
|
coscld |
|- ( x e. RR -> ( cos ` x ) e. CC ) |
136 |
135
|
adantl |
|- ( ( ph /\ x e. RR ) -> ( cos ` x ) e. CC ) |
137 |
134 136
|
mulcld |
|- ( ( ph /\ x e. RR ) -> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) e. CC ) |
138 |
|
sincl |
|- ( x e. CC -> ( sin ` x ) e. CC ) |
139 |
138
|
adantl |
|- ( ( ph /\ x e. CC ) -> ( sin ` x ) e. CC ) |
140 |
26
|
adantr |
|- ( ( ph /\ x e. CC ) -> N e. NN0 ) |
141 |
139 140
|
expcld |
|- ( ( ph /\ x e. CC ) -> ( ( sin ` x ) ^ N ) e. CC ) |
142 |
141 1
|
fmptd |
|- ( ph -> F : CC --> CC ) |
143 |
126
|
adantl |
|- ( ( ph /\ x e. RR ) -> x e. CC ) |
144 |
|
elex |
|- ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) e. CC -> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) e. _V ) |
145 |
137 144
|
syl |
|- ( ( ph /\ x e. RR ) -> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) e. _V ) |
146 |
|
rabid |
|- ( x e. { x e. CC | ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) e. _V } <-> ( x e. CC /\ ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) e. _V ) ) |
147 |
143 145 146
|
sylanbrc |
|- ( ( ph /\ x e. RR ) -> x e. { x e. CC | ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) e. _V } ) |
148 |
3
|
dmmpt |
|- dom H = { x e. CC | ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) e. _V } |
149 |
147 148
|
eleqtrrdi |
|- ( ( ph /\ x e. RR ) -> x e. dom H ) |
150 |
149
|
ex |
|- ( ph -> ( x e. RR -> x e. dom H ) ) |
151 |
150
|
alrimiv |
|- ( ph -> A. x ( x e. RR -> x e. dom H ) ) |
152 |
|
nfcv |
|- F/_ x RR |
153 |
|
nfmpt1 |
|- F/_ x ( x e. CC |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) ) |
154 |
3 153
|
nfcxfr |
|- F/_ x H |
155 |
154
|
nfdm |
|- F/_ x dom H |
156 |
152 155
|
dfss2f |
|- ( RR C_ dom H <-> A. x ( x e. RR -> x e. dom H ) ) |
157 |
151 156
|
sylibr |
|- ( ph -> RR C_ dom H ) |
158 |
7
|
dvsinexp |
|- ( ph -> ( CC _D ( x e. CC |-> ( ( sin ` x ) ^ N ) ) ) = ( x e. CC |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) ) ) |
159 |
1
|
oveq2i |
|- ( CC _D F ) = ( CC _D ( x e. CC |-> ( ( sin ` x ) ^ N ) ) ) |
160 |
158 159 3
|
3eqtr4g |
|- ( ph -> ( CC _D F ) = H ) |
161 |
160
|
dmeqd |
|- ( ph -> dom ( CC _D F ) = dom H ) |
162 |
157 161
|
sseqtrrd |
|- ( ph -> RR C_ dom ( CC _D F ) ) |
163 |
|
dvres3 |
|- ( ( ( RR e. { RR , CC } /\ F : CC --> CC ) /\ ( CC C_ CC /\ RR C_ dom ( CC _D F ) ) ) -> ( RR _D ( F |` RR ) ) = ( ( CC _D F ) |` RR ) ) |
164 |
125 142 58 162 163
|
syl22anc |
|- ( ph -> ( RR _D ( F |` RR ) ) = ( ( CC _D F ) |` RR ) ) |
165 |
1
|
reseq1i |
|- ( F |` RR ) = ( ( x e. CC |-> ( ( sin ` x ) ^ N ) ) |` RR ) |
166 |
|
resmpt |
|- ( RR C_ CC -> ( ( x e. CC |-> ( ( sin ` x ) ^ N ) ) |` RR ) = ( x e. RR |-> ( ( sin ` x ) ^ N ) ) ) |
167 |
20 166
|
ax-mp |
|- ( ( x e. CC |-> ( ( sin ` x ) ^ N ) ) |` RR ) = ( x e. RR |-> ( ( sin ` x ) ^ N ) ) |
168 |
165 167
|
eqtri |
|- ( F |` RR ) = ( x e. RR |-> ( ( sin ` x ) ^ N ) ) |
169 |
168
|
oveq2i |
|- ( RR _D ( F |` RR ) ) = ( RR _D ( x e. RR |-> ( ( sin ` x ) ^ N ) ) ) |
170 |
169
|
a1i |
|- ( ph -> ( RR _D ( F |` RR ) ) = ( RR _D ( x e. RR |-> ( ( sin ` x ) ^ N ) ) ) ) |
171 |
160
|
reseq1d |
|- ( ph -> ( ( CC _D F ) |` RR ) = ( H |` RR ) ) |
172 |
3
|
reseq1i |
|- ( H |` RR ) = ( ( x e. CC |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) ) |` RR ) |
173 |
|
resmpt |
|- ( RR C_ CC -> ( ( x e. CC |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) ) |` RR ) = ( x e. RR |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) ) ) |
174 |
20 173
|
ax-mp |
|- ( ( x e. CC |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) ) |` RR ) = ( x e. RR |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) ) |
175 |
172 174
|
eqtri |
|- ( H |` RR ) = ( x e. RR |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) ) |
176 |
171 175
|
eqtrdi |
|- ( ph -> ( ( CC _D F ) |` RR ) = ( x e. RR |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) ) ) |
177 |
164 170 176
|
3eqtr3d |
|- ( ph -> ( RR _D ( x e. RR |-> ( ( sin ` x ) ^ N ) ) ) = ( x e. RR |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) ) ) |
178 |
19
|
a1i |
|- ( ph -> ( 0 [,] _pi ) C_ RR ) |
179 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
180 |
179
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
181 |
17
|
a1i |
|- ( ph -> ( 0 e. RR /\ _pi e. RR ) ) |
182 |
|
iccntr |
|- ( ( 0 e. RR /\ _pi e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( 0 [,] _pi ) ) = ( 0 (,) _pi ) ) |
183 |
181 182
|
syl |
|- ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` ( 0 [,] _pi ) ) = ( 0 (,) _pi ) ) |
184 |
125 130 137 177 178 180 179 183
|
dvmptres2 |
|- ( ph -> ( RR _D ( x e. ( 0 [,] _pi ) |-> ( ( sin ` x ) ^ N ) ) ) = ( x e. ( 0 (,) _pi ) |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) ) ) |
185 |
135
|
negcld |
|- ( x e. RR -> -u ( cos ` x ) e. CC ) |
186 |
185
|
adantl |
|- ( ( ph /\ x e. RR ) -> -u ( cos ` x ) e. CC ) |
187 |
127
|
negcld |
|- ( x e. RR -> -u ( sin ` x ) e. CC ) |
188 |
187
|
adantl |
|- ( ( ph /\ x e. RR ) -> -u ( sin ` x ) e. CC ) |
189 |
|
dvcosre |
|- ( RR _D ( x e. RR |-> ( cos ` x ) ) ) = ( x e. RR |-> -u ( sin ` x ) ) |
190 |
189
|
a1i |
|- ( ph -> ( RR _D ( x e. RR |-> ( cos ` x ) ) ) = ( x e. RR |-> -u ( sin ` x ) ) ) |
191 |
125 136 188 190
|
dvmptneg |
|- ( ph -> ( RR _D ( x e. RR |-> -u ( cos ` x ) ) ) = ( x e. RR |-> -u -u ( sin ` x ) ) ) |
192 |
127
|
negnegd |
|- ( x e. RR -> -u -u ( sin ` x ) = ( sin ` x ) ) |
193 |
192
|
adantl |
|- ( ( ph /\ x e. RR ) -> -u -u ( sin ` x ) = ( sin ` x ) ) |
194 |
193
|
mpteq2dva |
|- ( ph -> ( x e. RR |-> -u -u ( sin ` x ) ) = ( x e. RR |-> ( sin ` x ) ) ) |
195 |
191 194
|
eqtrd |
|- ( ph -> ( RR _D ( x e. RR |-> -u ( cos ` x ) ) ) = ( x e. RR |-> ( sin ` x ) ) ) |
196 |
125 186 128 195 178 180 179 183
|
dvmptres2 |
|- ( ph -> ( RR _D ( x e. ( 0 [,] _pi ) |-> -u ( cos ` x ) ) ) = ( x e. ( 0 (,) _pi ) |-> ( sin ` x ) ) ) |
197 |
|
fveq2 |
|- ( x = 0 -> ( sin ` x ) = ( sin ` 0 ) ) |
198 |
|
sin0 |
|- ( sin ` 0 ) = 0 |
199 |
197 198
|
eqtrdi |
|- ( x = 0 -> ( sin ` x ) = 0 ) |
200 |
199
|
oveq1d |
|- ( x = 0 -> ( ( sin ` x ) ^ N ) = ( 0 ^ N ) ) |
201 |
200
|
adantl |
|- ( ( ph /\ x = 0 ) -> ( ( sin ` x ) ^ N ) = ( 0 ^ N ) ) |
202 |
7
|
adantr |
|- ( ( ph /\ x = 0 ) -> N e. NN ) |
203 |
202
|
0expd |
|- ( ( ph /\ x = 0 ) -> ( 0 ^ N ) = 0 ) |
204 |
201 203
|
eqtrd |
|- ( ( ph /\ x = 0 ) -> ( ( sin ` x ) ^ N ) = 0 ) |
205 |
204
|
oveq1d |
|- ( ( ph /\ x = 0 ) -> ( ( ( sin ` x ) ^ N ) x. -u ( cos ` x ) ) = ( 0 x. -u ( cos ` x ) ) ) |
206 |
|
id |
|- ( x = 0 -> x = 0 ) |
207 |
|
0cn |
|- 0 e. CC |
208 |
206 207
|
eqeltrdi |
|- ( x = 0 -> x e. CC ) |
209 |
|
coscl |
|- ( x e. CC -> ( cos ` x ) e. CC ) |
210 |
209
|
negcld |
|- ( x e. CC -> -u ( cos ` x ) e. CC ) |
211 |
208 210
|
syl |
|- ( x = 0 -> -u ( cos ` x ) e. CC ) |
212 |
211
|
adantl |
|- ( ( ph /\ x = 0 ) -> -u ( cos ` x ) e. CC ) |
213 |
212
|
mul02d |
|- ( ( ph /\ x = 0 ) -> ( 0 x. -u ( cos ` x ) ) = 0 ) |
214 |
205 213
|
eqtrd |
|- ( ( ph /\ x = 0 ) -> ( ( ( sin ` x ) ^ N ) x. -u ( cos ` x ) ) = 0 ) |
215 |
|
fveq2 |
|- ( x = _pi -> ( sin ` x ) = ( sin ` _pi ) ) |
216 |
|
sinpi |
|- ( sin ` _pi ) = 0 |
217 |
215 216
|
eqtrdi |
|- ( x = _pi -> ( sin ` x ) = 0 ) |
218 |
217
|
oveq1d |
|- ( x = _pi -> ( ( sin ` x ) ^ N ) = ( 0 ^ N ) ) |
219 |
218
|
adantl |
|- ( ( ph /\ x = _pi ) -> ( ( sin ` x ) ^ N ) = ( 0 ^ N ) ) |
220 |
7
|
adantr |
|- ( ( ph /\ x = _pi ) -> N e. NN ) |
221 |
220
|
0expd |
|- ( ( ph /\ x = _pi ) -> ( 0 ^ N ) = 0 ) |
222 |
219 221
|
eqtrd |
|- ( ( ph /\ x = _pi ) -> ( ( sin ` x ) ^ N ) = 0 ) |
223 |
222
|
oveq1d |
|- ( ( ph /\ x = _pi ) -> ( ( ( sin ` x ) ^ N ) x. -u ( cos ` x ) ) = ( 0 x. -u ( cos ` x ) ) ) |
224 |
|
id |
|- ( x = _pi -> x = _pi ) |
225 |
|
picn |
|- _pi e. CC |
226 |
224 225
|
eqeltrdi |
|- ( x = _pi -> x e. CC ) |
227 |
226
|
coscld |
|- ( x = _pi -> ( cos ` x ) e. CC ) |
228 |
227
|
negcld |
|- ( x = _pi -> -u ( cos ` x ) e. CC ) |
229 |
228
|
adantl |
|- ( ( ph /\ x = _pi ) -> -u ( cos ` x ) e. CC ) |
230 |
229
|
mul02d |
|- ( ( ph /\ x = _pi ) -> ( 0 x. -u ( cos ` x ) ) = 0 ) |
231 |
223 230
|
eqtrd |
|- ( ( ph /\ x = _pi ) -> ( ( ( sin ` x ) ^ N ) x. -u ( cos ` x ) ) = 0 ) |
232 |
11 13 16 42 57 83 84 106 123 184 196 214 231
|
itgparts |
|- ( ph -> S. ( 0 (,) _pi ) ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) _d x = ( ( 0 - 0 ) - S. ( 0 (,) _pi ) ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) _d x ) ) |
233 |
|
df-neg |
|- -u S. ( 0 (,) _pi ) ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) _d x = ( 0 - S. ( 0 (,) _pi ) ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) _d x ) |
234 |
233
|
a1i |
|- ( ph -> -u S. ( 0 (,) _pi ) ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) _d x = ( 0 - S. ( 0 (,) _pi ) ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) _d x ) ) |
235 |
9 232 234
|
3eqtr4a |
|- ( ph -> S. ( 0 (,) _pi ) ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) _d x = -u S. ( 0 (,) _pi ) ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) _d x ) |
236 |
79 81 81
|
mulassd |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. ( cos ` x ) ) = ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( ( cos ` x ) x. ( cos ` x ) ) ) ) |
237 |
|
sqval |
|- ( ( cos ` x ) e. CC -> ( ( cos ` x ) ^ 2 ) = ( ( cos ` x ) x. ( cos ` x ) ) ) |
238 |
237
|
eqcomd |
|- ( ( cos ` x ) e. CC -> ( ( cos ` x ) x. ( cos ` x ) ) = ( ( cos ` x ) ^ 2 ) ) |
239 |
80 238
|
syl |
|- ( x e. ( 0 (,) _pi ) -> ( ( cos ` x ) x. ( cos ` x ) ) = ( ( cos ` x ) ^ 2 ) ) |
240 |
239
|
adantl |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( cos ` x ) x. ( cos ` x ) ) = ( ( cos ` x ) ^ 2 ) ) |
241 |
240
|
oveq2d |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( ( cos ` x ) x. ( cos ` x ) ) ) = ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( ( cos ` x ) ^ 2 ) ) ) |
242 |
80
|
sqcld |
|- ( x e. ( 0 (,) _pi ) -> ( ( cos ` x ) ^ 2 ) e. CC ) |
243 |
242
|
adantl |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( cos ` x ) ^ 2 ) e. CC ) |
244 |
73 78 243
|
mulassd |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( ( cos ` x ) ^ 2 ) ) = ( N x. ( ( ( sin ` x ) ^ ( N - 1 ) ) x. ( ( cos ` x ) ^ 2 ) ) ) ) |
245 |
241 244
|
eqtrd |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( ( cos ` x ) x. ( cos ` x ) ) ) = ( N x. ( ( ( sin ` x ) ^ ( N - 1 ) ) x. ( ( cos ` x ) ^ 2 ) ) ) ) |
246 |
78 243
|
mulcomd |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( ( sin ` x ) ^ ( N - 1 ) ) x. ( ( cos ` x ) ^ 2 ) ) = ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) |
247 |
246
|
oveq2d |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( N x. ( ( ( sin ` x ) ^ ( N - 1 ) ) x. ( ( cos ` x ) ^ 2 ) ) ) = ( N x. ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) ) |
248 |
236 245 247
|
3eqtrd |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. ( cos ` x ) ) = ( N x. ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) ) |
249 |
248
|
negeqd |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> -u ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. ( cos ` x ) ) = -u ( N x. ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) ) |
250 |
82 81
|
mulneg2d |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) = -u ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. ( cos ` x ) ) ) |
251 |
243 78
|
mulcld |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) e. CC ) |
252 |
73 251
|
mulneg1d |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( -u N x. ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) = -u ( N x. ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) ) |
253 |
249 250 252
|
3eqtr4d |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) = ( -u N x. ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) ) |
254 |
253
|
itgeq2dv |
|- ( ph -> S. ( 0 (,) _pi ) ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) _d x = S. ( 0 (,) _pi ) ( -u N x. ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) _d x ) |
255 |
59
|
negcld |
|- ( ph -> -u N e. CC ) |
256 |
43
|
sqcld |
|- ( x e. ( 0 [,] _pi ) -> ( ( cos ` x ) ^ 2 ) e. CC ) |
257 |
256
|
adantl |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( ( cos ` x ) ^ 2 ) e. CC ) |
258 |
257 109
|
mulcld |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) e. CC ) |
259 |
6
|
fvmpt2 |
|- ( ( x e. CC /\ ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) e. CC ) -> ( M ` x ) = ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) |
260 |
23 258 259
|
syl2anc |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( M ` x ) = ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) |
261 |
260
|
eqcomd |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) = ( M ` x ) ) |
262 |
261
|
mpteq2dva |
|- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) = ( x e. ( 0 [,] _pi ) |-> ( M ` x ) ) ) |
263 |
|
nfmpt1 |
|- F/_ x ( x e. CC |-> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) |
264 |
6 263
|
nfcxfr |
|- F/_ x M |
265 |
|
nfcv |
|- F/_ x cos |
266 |
|
2nn0 |
|- 2 e. NN0 |
267 |
266
|
a1i |
|- ( ph -> 2 e. NN0 ) |
268 |
265 53 267
|
expcnfg |
|- ( ph -> ( x e. CC |-> ( ( cos ` x ) ^ 2 ) ) e. ( CC -cn-> CC ) ) |
269 |
268 63
|
mulcncf |
|- ( ph -> ( x e. CC |-> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) e. ( CC -cn-> CC ) ) |
270 |
6 269
|
eqeltrid |
|- ( ph -> M e. ( CC -cn-> CC ) ) |
271 |
264 270 40
|
cncfmptss |
|- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( M ` x ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) |
272 |
262 271
|
eqeltrd |
|- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) |
273 |
|
cniccibl |
|- ( ( 0 e. RR /\ _pi e. RR /\ ( x e. ( 0 [,] _pi ) |-> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) -> ( x e. ( 0 [,] _pi ) |-> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) e. L^1 ) |
274 |
11 13 272 273
|
syl3anc |
|- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) e. L^1 ) |
275 |
86 88 258 274
|
iblss |
|- ( ph -> ( x e. ( 0 (,) _pi ) |-> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) e. L^1 ) |
276 |
255 251 275
|
itgmulc2 |
|- ( ph -> ( -u N x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) _d x ) = S. ( 0 (,) _pi ) ( -u N x. ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) _d x ) |
277 |
254 276
|
eqtr4d |
|- ( ph -> S. ( 0 (,) _pi ) ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) _d x = ( -u N x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) _d x ) ) |
278 |
277
|
negeqd |
|- ( ph -> -u S. ( 0 (,) _pi ) ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) _d x = -u ( -u N x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) _d x ) ) |
279 |
235 278
|
eqtrd |
|- ( ph -> S. ( 0 (,) _pi ) ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) _d x = -u ( -u N x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) _d x ) ) |
280 |
251 275
|
itgcl |
|- ( ph -> S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) _d x e. CC ) |
281 |
59 280
|
mulneg1d |
|- ( ph -> ( -u N x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) _d x ) = -u ( N x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) _d x ) ) |
282 |
281
|
negeqd |
|- ( ph -> -u ( -u N x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) _d x ) = -u -u ( N x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) _d x ) ) |
283 |
59 280
|
mulcld |
|- ( ph -> ( N x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) _d x ) e. CC ) |
284 |
283
|
negnegd |
|- ( ph -> -u -u ( N x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) _d x ) = ( N x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) _d x ) ) |
285 |
279 282 284
|
3eqtrd |
|- ( ph -> S. ( 0 (,) _pi ) ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) _d x = ( N x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) _d x ) ) |