| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itgsplit.i |  |-  ( ph -> ( vol* ` ( A i^i B ) ) = 0 ) | 
						
							| 2 |  | itgsplit.u |  |-  ( ph -> U = ( A u. B ) ) | 
						
							| 3 |  | itgsplit.c |  |-  ( ( ph /\ x e. U ) -> C e. V ) | 
						
							| 4 |  | itgsplit.a |  |-  ( ph -> ( x e. A |-> C ) e. L^1 ) | 
						
							| 5 |  | itgsplit.b |  |-  ( ph -> ( x e. B |-> C ) e. L^1 ) | 
						
							| 6 |  | iblmbf |  |-  ( ( x e. A |-> C ) e. L^1 -> ( x e. A |-> C ) e. MblFn ) | 
						
							| 7 | 4 6 | syl |  |-  ( ph -> ( x e. A |-> C ) e. MblFn ) | 
						
							| 8 |  | ssun1 |  |-  A C_ ( A u. B ) | 
						
							| 9 | 8 2 | sseqtrrid |  |-  ( ph -> A C_ U ) | 
						
							| 10 | 9 | sselda |  |-  ( ( ph /\ x e. A ) -> x e. U ) | 
						
							| 11 | 10 3 | syldan |  |-  ( ( ph /\ x e. A ) -> C e. V ) | 
						
							| 12 | 7 11 | mbfdm2 |  |-  ( ph -> A e. dom vol ) | 
						
							| 13 | 12 | adantr |  |-  ( ( ph /\ k e. ( 0 ... 3 ) ) -> A e. dom vol ) | 
						
							| 14 |  | iblmbf |  |-  ( ( x e. B |-> C ) e. L^1 -> ( x e. B |-> C ) e. MblFn ) | 
						
							| 15 | 5 14 | syl |  |-  ( ph -> ( x e. B |-> C ) e. MblFn ) | 
						
							| 16 |  | ssun2 |  |-  B C_ ( A u. B ) | 
						
							| 17 | 16 2 | sseqtrrid |  |-  ( ph -> B C_ U ) | 
						
							| 18 | 17 | sselda |  |-  ( ( ph /\ x e. B ) -> x e. U ) | 
						
							| 19 | 18 3 | syldan |  |-  ( ( ph /\ x e. B ) -> C e. V ) | 
						
							| 20 | 15 19 | mbfdm2 |  |-  ( ph -> B e. dom vol ) | 
						
							| 21 | 20 | adantr |  |-  ( ( ph /\ k e. ( 0 ... 3 ) ) -> B e. dom vol ) | 
						
							| 22 | 1 | adantr |  |-  ( ( ph /\ k e. ( 0 ... 3 ) ) -> ( vol* ` ( A i^i B ) ) = 0 ) | 
						
							| 23 | 2 | adantr |  |-  ( ( ph /\ k e. ( 0 ... 3 ) ) -> U = ( A u. B ) ) | 
						
							| 24 | 2 | eleq2d |  |-  ( ph -> ( x e. U <-> x e. ( A u. B ) ) ) | 
						
							| 25 |  | elun |  |-  ( x e. ( A u. B ) <-> ( x e. A \/ x e. B ) ) | 
						
							| 26 | 24 25 | bitrdi |  |-  ( ph -> ( x e. U <-> ( x e. A \/ x e. B ) ) ) | 
						
							| 27 | 26 | biimpa |  |-  ( ( ph /\ x e. U ) -> ( x e. A \/ x e. B ) ) | 
						
							| 28 | 7 11 | mbfmptcl |  |-  ( ( ph /\ x e. A ) -> C e. CC ) | 
						
							| 29 | 15 19 | mbfmptcl |  |-  ( ( ph /\ x e. B ) -> C e. CC ) | 
						
							| 30 | 28 29 | jaodan |  |-  ( ( ph /\ ( x e. A \/ x e. B ) ) -> C e. CC ) | 
						
							| 31 | 27 30 | syldan |  |-  ( ( ph /\ x e. U ) -> C e. CC ) | 
						
							| 32 | 31 | adantlr |  |-  ( ( ( ph /\ k e. ( 0 ... 3 ) ) /\ x e. U ) -> C e. CC ) | 
						
							| 33 |  | ax-icn |  |-  _i e. CC | 
						
							| 34 |  | elfznn0 |  |-  ( k e. ( 0 ... 3 ) -> k e. NN0 ) | 
						
							| 35 | 34 | adantl |  |-  ( ( ph /\ k e. ( 0 ... 3 ) ) -> k e. NN0 ) | 
						
							| 36 |  | expcl |  |-  ( ( _i e. CC /\ k e. NN0 ) -> ( _i ^ k ) e. CC ) | 
						
							| 37 | 33 35 36 | sylancr |  |-  ( ( ph /\ k e. ( 0 ... 3 ) ) -> ( _i ^ k ) e. CC ) | 
						
							| 38 | 37 | adantr |  |-  ( ( ( ph /\ k e. ( 0 ... 3 ) ) /\ x e. U ) -> ( _i ^ k ) e. CC ) | 
						
							| 39 |  | ine0 |  |-  _i =/= 0 | 
						
							| 40 |  | elfzelz |  |-  ( k e. ( 0 ... 3 ) -> k e. ZZ ) | 
						
							| 41 | 40 | adantl |  |-  ( ( ph /\ k e. ( 0 ... 3 ) ) -> k e. ZZ ) | 
						
							| 42 |  | expne0i |  |-  ( ( _i e. CC /\ _i =/= 0 /\ k e. ZZ ) -> ( _i ^ k ) =/= 0 ) | 
						
							| 43 | 33 39 41 42 | mp3an12i |  |-  ( ( ph /\ k e. ( 0 ... 3 ) ) -> ( _i ^ k ) =/= 0 ) | 
						
							| 44 | 43 | adantr |  |-  ( ( ( ph /\ k e. ( 0 ... 3 ) ) /\ x e. U ) -> ( _i ^ k ) =/= 0 ) | 
						
							| 45 | 32 38 44 | divcld |  |-  ( ( ( ph /\ k e. ( 0 ... 3 ) ) /\ x e. U ) -> ( C / ( _i ^ k ) ) e. CC ) | 
						
							| 46 | 45 | recld |  |-  ( ( ( ph /\ k e. ( 0 ... 3 ) ) /\ x e. U ) -> ( Re ` ( C / ( _i ^ k ) ) ) e. RR ) | 
						
							| 47 |  | 0re |  |-  0 e. RR | 
						
							| 48 |  | ifcl |  |-  ( ( ( Re ` ( C / ( _i ^ k ) ) ) e. RR /\ 0 e. RR ) -> if ( 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) e. RR ) | 
						
							| 49 | 46 47 48 | sylancl |  |-  ( ( ( ph /\ k e. ( 0 ... 3 ) ) /\ x e. U ) -> if ( 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) e. RR ) | 
						
							| 50 | 49 | rexrd |  |-  ( ( ( ph /\ k e. ( 0 ... 3 ) ) /\ x e. U ) -> if ( 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) e. RR* ) | 
						
							| 51 |  | max1 |  |-  ( ( 0 e. RR /\ ( Re ` ( C / ( _i ^ k ) ) ) e. RR ) -> 0 <_ if ( 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) | 
						
							| 52 | 47 46 51 | sylancr |  |-  ( ( ( ph /\ k e. ( 0 ... 3 ) ) /\ x e. U ) -> 0 <_ if ( 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) | 
						
							| 53 |  | elxrge0 |  |-  ( if ( 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) e. ( 0 [,] +oo ) <-> ( if ( 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) e. RR* /\ 0 <_ if ( 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) ) | 
						
							| 54 | 50 52 53 | sylanbrc |  |-  ( ( ( ph /\ k e. ( 0 ... 3 ) ) /\ x e. U ) -> if ( 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) e. ( 0 [,] +oo ) ) | 
						
							| 55 |  | ifan |  |-  if ( ( x e. A /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) = if ( x e. A , if ( 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) , 0 ) | 
						
							| 56 | 55 | mpteq2i |  |-  ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) = ( x e. RR |-> if ( x e. A , if ( 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) , 0 ) ) | 
						
							| 57 |  | ifan |  |-  if ( ( x e. B /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) = if ( x e. B , if ( 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) , 0 ) | 
						
							| 58 | 57 | mpteq2i |  |-  ( x e. RR |-> if ( ( x e. B /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) = ( x e. RR |-> if ( x e. B , if ( 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) , 0 ) ) | 
						
							| 59 |  | ifan |  |-  if ( ( x e. U /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) = if ( x e. U , if ( 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) , 0 ) | 
						
							| 60 | 59 | mpteq2i |  |-  ( x e. RR |-> if ( ( x e. U /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) = ( x e. RR |-> if ( x e. U , if ( 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) , 0 ) ) | 
						
							| 61 |  | eqidd |  |-  ( ph -> ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) = ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) ) | 
						
							| 62 |  | eqidd |  |-  ( ( ph /\ x e. A ) -> ( Re ` ( C / ( _i ^ k ) ) ) = ( Re ` ( C / ( _i ^ k ) ) ) ) | 
						
							| 63 | 61 62 4 11 | iblitg |  |-  ( ( ph /\ k e. ZZ ) -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) ) e. RR ) | 
						
							| 64 | 40 63 | sylan2 |  |-  ( ( ph /\ k e. ( 0 ... 3 ) ) -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) ) e. RR ) | 
						
							| 65 |  | eqidd |  |-  ( ph -> ( x e. RR |-> if ( ( x e. B /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) = ( x e. RR |-> if ( ( x e. B /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) ) | 
						
							| 66 |  | eqidd |  |-  ( ( ph /\ x e. B ) -> ( Re ` ( C / ( _i ^ k ) ) ) = ( Re ` ( C / ( _i ^ k ) ) ) ) | 
						
							| 67 | 65 66 5 19 | iblitg |  |-  ( ( ph /\ k e. ZZ ) -> ( S.2 ` ( x e. RR |-> if ( ( x e. B /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) ) e. RR ) | 
						
							| 68 | 40 67 | sylan2 |  |-  ( ( ph /\ k e. ( 0 ... 3 ) ) -> ( S.2 ` ( x e. RR |-> if ( ( x e. B /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) ) e. RR ) | 
						
							| 69 | 13 21 22 23 54 56 58 60 64 68 | itg2split |  |-  ( ( ph /\ k e. ( 0 ... 3 ) ) -> ( S.2 ` ( x e. RR |-> if ( ( x e. U /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) ) = ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) ) + ( S.2 ` ( x e. RR |-> if ( ( x e. B /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) ) ) ) | 
						
							| 70 | 69 | oveq2d |  |-  ( ( ph /\ k e. ( 0 ... 3 ) ) -> ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. U /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) ) ) = ( ( _i ^ k ) x. ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) ) + ( S.2 ` ( x e. RR |-> if ( ( x e. B /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) ) ) ) ) | 
						
							| 71 | 63 | recnd |  |-  ( ( ph /\ k e. ZZ ) -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) ) e. CC ) | 
						
							| 72 | 40 71 | sylan2 |  |-  ( ( ph /\ k e. ( 0 ... 3 ) ) -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) ) e. CC ) | 
						
							| 73 | 68 | recnd |  |-  ( ( ph /\ k e. ( 0 ... 3 ) ) -> ( S.2 ` ( x e. RR |-> if ( ( x e. B /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) ) e. CC ) | 
						
							| 74 | 37 72 73 | adddid |  |-  ( ( ph /\ k e. ( 0 ... 3 ) ) -> ( ( _i ^ k ) x. ( ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) ) + ( S.2 ` ( x e. RR |-> if ( ( x e. B /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) ) ) ) = ( ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) ) ) + ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. B /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) ) ) ) ) | 
						
							| 75 | 70 74 | eqtrd |  |-  ( ( ph /\ k e. ( 0 ... 3 ) ) -> ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. U /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) ) ) = ( ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) ) ) + ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. B /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) ) ) ) ) | 
						
							| 76 | 75 | sumeq2dv |  |-  ( ph -> sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. U /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) ) ) = sum_ k e. ( 0 ... 3 ) ( ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) ) ) + ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. B /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) ) ) ) ) | 
						
							| 77 |  | fzfid |  |-  ( ph -> ( 0 ... 3 ) e. Fin ) | 
						
							| 78 | 37 72 | mulcld |  |-  ( ( ph /\ k e. ( 0 ... 3 ) ) -> ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) ) ) e. CC ) | 
						
							| 79 | 37 73 | mulcld |  |-  ( ( ph /\ k e. ( 0 ... 3 ) ) -> ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. B /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) ) ) e. CC ) | 
						
							| 80 | 77 78 79 | fsumadd |  |-  ( ph -> sum_ k e. ( 0 ... 3 ) ( ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) ) ) + ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. B /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) ) ) ) = ( sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) ) ) + sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. B /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) ) ) ) ) | 
						
							| 81 | 76 80 | eqtrd |  |-  ( ph -> sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. U /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) ) ) = ( sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) ) ) + sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. B /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) ) ) ) ) | 
						
							| 82 |  | eqid |  |-  ( Re ` ( C / ( _i ^ k ) ) ) = ( Re ` ( C / ( _i ^ k ) ) ) | 
						
							| 83 | 82 | dfitg |  |-  S. U C _d x = sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. U /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) ) ) | 
						
							| 84 | 82 | dfitg |  |-  S. A C _d x = sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) ) ) | 
						
							| 85 | 82 | dfitg |  |-  S. B C _d x = sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. B /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) ) ) | 
						
							| 86 | 84 85 | oveq12i |  |-  ( S. A C _d x + S. B C _d x ) = ( sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) ) ) + sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. B /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) ) ) ) | 
						
							| 87 | 81 83 86 | 3eqtr4g |  |-  ( ph -> S. U C _d x = ( S. A C _d x + S. B C _d x ) ) |