| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itgspliticc.1 |  |-  ( ph -> A e. RR ) | 
						
							| 2 |  | itgspliticc.2 |  |-  ( ph -> C e. RR ) | 
						
							| 3 |  | itgspliticc.3 |  |-  ( ph -> B e. ( A [,] C ) ) | 
						
							| 4 |  | itgspliticc.4 |  |-  ( ( ph /\ x e. ( A [,] C ) ) -> D e. V ) | 
						
							| 5 |  | itgspliticc.5 |  |-  ( ph -> ( x e. ( A [,] B ) |-> D ) e. L^1 ) | 
						
							| 6 |  | itgspliticc.6 |  |-  ( ph -> ( x e. ( B [,] C ) |-> D ) e. L^1 ) | 
						
							| 7 | 1 | rexrd |  |-  ( ph -> A e. RR* ) | 
						
							| 8 |  | elicc2 |  |-  ( ( A e. RR /\ C e. RR ) -> ( B e. ( A [,] C ) <-> ( B e. RR /\ A <_ B /\ B <_ C ) ) ) | 
						
							| 9 | 1 2 8 | syl2anc |  |-  ( ph -> ( B e. ( A [,] C ) <-> ( B e. RR /\ A <_ B /\ B <_ C ) ) ) | 
						
							| 10 | 3 9 | mpbid |  |-  ( ph -> ( B e. RR /\ A <_ B /\ B <_ C ) ) | 
						
							| 11 | 10 | simp1d |  |-  ( ph -> B e. RR ) | 
						
							| 12 | 11 | rexrd |  |-  ( ph -> B e. RR* ) | 
						
							| 13 | 2 | rexrd |  |-  ( ph -> C e. RR* ) | 
						
							| 14 |  | df-icc |  |-  [,] = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z <_ y ) } ) | 
						
							| 15 |  | xrmaxle |  |-  ( ( A e. RR* /\ B e. RR* /\ z e. RR* ) -> ( if ( A <_ B , B , A ) <_ z <-> ( A <_ z /\ B <_ z ) ) ) | 
						
							| 16 |  | xrlemin |  |-  ( ( z e. RR* /\ B e. RR* /\ C e. RR* ) -> ( z <_ if ( B <_ C , B , C ) <-> ( z <_ B /\ z <_ C ) ) ) | 
						
							| 17 | 14 15 16 | ixxin |  |-  ( ( ( A e. RR* /\ B e. RR* ) /\ ( B e. RR* /\ C e. RR* ) ) -> ( ( A [,] B ) i^i ( B [,] C ) ) = ( if ( A <_ B , B , A ) [,] if ( B <_ C , B , C ) ) ) | 
						
							| 18 | 7 12 12 13 17 | syl22anc |  |-  ( ph -> ( ( A [,] B ) i^i ( B [,] C ) ) = ( if ( A <_ B , B , A ) [,] if ( B <_ C , B , C ) ) ) | 
						
							| 19 | 10 | simp2d |  |-  ( ph -> A <_ B ) | 
						
							| 20 | 19 | iftrued |  |-  ( ph -> if ( A <_ B , B , A ) = B ) | 
						
							| 21 | 10 | simp3d |  |-  ( ph -> B <_ C ) | 
						
							| 22 | 21 | iftrued |  |-  ( ph -> if ( B <_ C , B , C ) = B ) | 
						
							| 23 | 20 22 | oveq12d |  |-  ( ph -> ( if ( A <_ B , B , A ) [,] if ( B <_ C , B , C ) ) = ( B [,] B ) ) | 
						
							| 24 |  | iccid |  |-  ( B e. RR* -> ( B [,] B ) = { B } ) | 
						
							| 25 | 12 24 | syl |  |-  ( ph -> ( B [,] B ) = { B } ) | 
						
							| 26 | 18 23 25 | 3eqtrd |  |-  ( ph -> ( ( A [,] B ) i^i ( B [,] C ) ) = { B } ) | 
						
							| 27 | 26 | fveq2d |  |-  ( ph -> ( vol* ` ( ( A [,] B ) i^i ( B [,] C ) ) ) = ( vol* ` { B } ) ) | 
						
							| 28 |  | ovolsn |  |-  ( B e. RR -> ( vol* ` { B } ) = 0 ) | 
						
							| 29 | 11 28 | syl |  |-  ( ph -> ( vol* ` { B } ) = 0 ) | 
						
							| 30 | 27 29 | eqtrd |  |-  ( ph -> ( vol* ` ( ( A [,] B ) i^i ( B [,] C ) ) ) = 0 ) | 
						
							| 31 |  | iccsplit |  |-  ( ( A e. RR /\ C e. RR /\ B e. ( A [,] C ) ) -> ( A [,] C ) = ( ( A [,] B ) u. ( B [,] C ) ) ) | 
						
							| 32 | 1 2 3 31 | syl3anc |  |-  ( ph -> ( A [,] C ) = ( ( A [,] B ) u. ( B [,] C ) ) ) | 
						
							| 33 | 30 32 4 5 6 | itgsplit |  |-  ( ph -> S. ( A [,] C ) D _d x = ( S. ( A [,] B ) D _d x + S. ( B [,] C ) D _d x ) ) |