| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itgsplitioo.1 |  |-  ( ph -> A e. RR ) | 
						
							| 2 |  | itgsplitioo.2 |  |-  ( ph -> C e. RR ) | 
						
							| 3 |  | itgsplitioo.3 |  |-  ( ph -> B e. ( A [,] C ) ) | 
						
							| 4 |  | itgsplitioo.4 |  |-  ( ( ph /\ x e. ( A (,) C ) ) -> D e. CC ) | 
						
							| 5 |  | itgsplitioo.5 |  |-  ( ph -> ( x e. ( A (,) B ) |-> D ) e. L^1 ) | 
						
							| 6 |  | itgsplitioo.6 |  |-  ( ph -> ( x e. ( B (,) C ) |-> D ) e. L^1 ) | 
						
							| 7 |  | elicc2 |  |-  ( ( A e. RR /\ C e. RR ) -> ( B e. ( A [,] C ) <-> ( B e. RR /\ A <_ B /\ B <_ C ) ) ) | 
						
							| 8 | 1 2 7 | syl2anc |  |-  ( ph -> ( B e. ( A [,] C ) <-> ( B e. RR /\ A <_ B /\ B <_ C ) ) ) | 
						
							| 9 | 3 8 | mpbid |  |-  ( ph -> ( B e. RR /\ A <_ B /\ B <_ C ) ) | 
						
							| 10 | 9 | simp2d |  |-  ( ph -> A <_ B ) | 
						
							| 11 | 9 | simp1d |  |-  ( ph -> B e. RR ) | 
						
							| 12 | 1 11 | leloed |  |-  ( ph -> ( A <_ B <-> ( A < B \/ A = B ) ) ) | 
						
							| 13 | 10 12 | mpbid |  |-  ( ph -> ( A < B \/ A = B ) ) | 
						
							| 14 | 13 | ord |  |-  ( ph -> ( -. A < B -> A = B ) ) | 
						
							| 15 | 1 | rexrd |  |-  ( ph -> A e. RR* ) | 
						
							| 16 |  | iooss1 |  |-  ( ( A e. RR* /\ A <_ B ) -> ( B (,) C ) C_ ( A (,) C ) ) | 
						
							| 17 | 15 10 16 | syl2anc |  |-  ( ph -> ( B (,) C ) C_ ( A (,) C ) ) | 
						
							| 18 | 17 | sselda |  |-  ( ( ph /\ x e. ( B (,) C ) ) -> x e. ( A (,) C ) ) | 
						
							| 19 | 18 4 | syldan |  |-  ( ( ph /\ x e. ( B (,) C ) ) -> D e. CC ) | 
						
							| 20 | 19 6 | itgcl |  |-  ( ph -> S. ( B (,) C ) D _d x e. CC ) | 
						
							| 21 | 20 | addlidd |  |-  ( ph -> ( 0 + S. ( B (,) C ) D _d x ) = S. ( B (,) C ) D _d x ) | 
						
							| 22 | 21 | eqcomd |  |-  ( ph -> S. ( B (,) C ) D _d x = ( 0 + S. ( B (,) C ) D _d x ) ) | 
						
							| 23 |  | oveq1 |  |-  ( A = B -> ( A (,) C ) = ( B (,) C ) ) | 
						
							| 24 |  | itgeq1 |  |-  ( ( A (,) C ) = ( B (,) C ) -> S. ( A (,) C ) D _d x = S. ( B (,) C ) D _d x ) | 
						
							| 25 | 23 24 | syl |  |-  ( A = B -> S. ( A (,) C ) D _d x = S. ( B (,) C ) D _d x ) | 
						
							| 26 |  | oveq1 |  |-  ( A = B -> ( A (,) B ) = ( B (,) B ) ) | 
						
							| 27 |  | iooid |  |-  ( B (,) B ) = (/) | 
						
							| 28 | 26 27 | eqtrdi |  |-  ( A = B -> ( A (,) B ) = (/) ) | 
						
							| 29 |  | itgeq1 |  |-  ( ( A (,) B ) = (/) -> S. ( A (,) B ) D _d x = S. (/) D _d x ) | 
						
							| 30 | 28 29 | syl |  |-  ( A = B -> S. ( A (,) B ) D _d x = S. (/) D _d x ) | 
						
							| 31 |  | itg0 |  |-  S. (/) D _d x = 0 | 
						
							| 32 | 30 31 | eqtrdi |  |-  ( A = B -> S. ( A (,) B ) D _d x = 0 ) | 
						
							| 33 | 32 | oveq1d |  |-  ( A = B -> ( S. ( A (,) B ) D _d x + S. ( B (,) C ) D _d x ) = ( 0 + S. ( B (,) C ) D _d x ) ) | 
						
							| 34 | 25 33 | eqeq12d |  |-  ( A = B -> ( S. ( A (,) C ) D _d x = ( S. ( A (,) B ) D _d x + S. ( B (,) C ) D _d x ) <-> S. ( B (,) C ) D _d x = ( 0 + S. ( B (,) C ) D _d x ) ) ) | 
						
							| 35 | 22 34 | syl5ibrcom |  |-  ( ph -> ( A = B -> S. ( A (,) C ) D _d x = ( S. ( A (,) B ) D _d x + S. ( B (,) C ) D _d x ) ) ) | 
						
							| 36 | 14 35 | syld |  |-  ( ph -> ( -. A < B -> S. ( A (,) C ) D _d x = ( S. ( A (,) B ) D _d x + S. ( B (,) C ) D _d x ) ) ) | 
						
							| 37 | 9 | simp3d |  |-  ( ph -> B <_ C ) | 
						
							| 38 | 11 2 | leloed |  |-  ( ph -> ( B <_ C <-> ( B < C \/ B = C ) ) ) | 
						
							| 39 | 37 38 | mpbid |  |-  ( ph -> ( B < C \/ B = C ) ) | 
						
							| 40 | 39 | ord |  |-  ( ph -> ( -. B < C -> B = C ) ) | 
						
							| 41 | 2 | rexrd |  |-  ( ph -> C e. RR* ) | 
						
							| 42 |  | iooss2 |  |-  ( ( C e. RR* /\ B <_ C ) -> ( A (,) B ) C_ ( A (,) C ) ) | 
						
							| 43 | 41 37 42 | syl2anc |  |-  ( ph -> ( A (,) B ) C_ ( A (,) C ) ) | 
						
							| 44 | 43 | sselda |  |-  ( ( ph /\ x e. ( A (,) B ) ) -> x e. ( A (,) C ) ) | 
						
							| 45 | 44 4 | syldan |  |-  ( ( ph /\ x e. ( A (,) B ) ) -> D e. CC ) | 
						
							| 46 | 45 5 | itgcl |  |-  ( ph -> S. ( A (,) B ) D _d x e. CC ) | 
						
							| 47 | 46 | addridd |  |-  ( ph -> ( S. ( A (,) B ) D _d x + 0 ) = S. ( A (,) B ) D _d x ) | 
						
							| 48 | 47 | eqcomd |  |-  ( ph -> S. ( A (,) B ) D _d x = ( S. ( A (,) B ) D _d x + 0 ) ) | 
						
							| 49 |  | oveq2 |  |-  ( B = C -> ( A (,) B ) = ( A (,) C ) ) | 
						
							| 50 |  | itgeq1 |  |-  ( ( A (,) B ) = ( A (,) C ) -> S. ( A (,) B ) D _d x = S. ( A (,) C ) D _d x ) | 
						
							| 51 | 49 50 | syl |  |-  ( B = C -> S. ( A (,) B ) D _d x = S. ( A (,) C ) D _d x ) | 
						
							| 52 |  | oveq2 |  |-  ( B = C -> ( B (,) B ) = ( B (,) C ) ) | 
						
							| 53 | 27 52 | eqtr3id |  |-  ( B = C -> (/) = ( B (,) C ) ) | 
						
							| 54 |  | itgeq1 |  |-  ( (/) = ( B (,) C ) -> S. (/) D _d x = S. ( B (,) C ) D _d x ) | 
						
							| 55 | 53 54 | syl |  |-  ( B = C -> S. (/) D _d x = S. ( B (,) C ) D _d x ) | 
						
							| 56 | 31 55 | eqtr3id |  |-  ( B = C -> 0 = S. ( B (,) C ) D _d x ) | 
						
							| 57 | 56 | oveq2d |  |-  ( B = C -> ( S. ( A (,) B ) D _d x + 0 ) = ( S. ( A (,) B ) D _d x + S. ( B (,) C ) D _d x ) ) | 
						
							| 58 | 51 57 | eqeq12d |  |-  ( B = C -> ( S. ( A (,) B ) D _d x = ( S. ( A (,) B ) D _d x + 0 ) <-> S. ( A (,) C ) D _d x = ( S. ( A (,) B ) D _d x + S. ( B (,) C ) D _d x ) ) ) | 
						
							| 59 | 48 58 | syl5ibcom |  |-  ( ph -> ( B = C -> S. ( A (,) C ) D _d x = ( S. ( A (,) B ) D _d x + S. ( B (,) C ) D _d x ) ) ) | 
						
							| 60 | 40 59 | syld |  |-  ( ph -> ( -. B < C -> S. ( A (,) C ) D _d x = ( S. ( A (,) B ) D _d x + S. ( B (,) C ) D _d x ) ) ) | 
						
							| 61 |  | indir |  |-  ( ( ( A (,) B ) u. { B } ) i^i ( B (,) C ) ) = ( ( ( A (,) B ) i^i ( B (,) C ) ) u. ( { B } i^i ( B (,) C ) ) ) | 
						
							| 62 | 11 | rexrd |  |-  ( ph -> B e. RR* ) | 
						
							| 63 | 15 62 | jca |  |-  ( ph -> ( A e. RR* /\ B e. RR* ) ) | 
						
							| 64 | 63 | adantr |  |-  ( ( ph /\ ( A < B /\ B < C ) ) -> ( A e. RR* /\ B e. RR* ) ) | 
						
							| 65 | 62 41 | jca |  |-  ( ph -> ( B e. RR* /\ C e. RR* ) ) | 
						
							| 66 | 65 | adantr |  |-  ( ( ph /\ ( A < B /\ B < C ) ) -> ( B e. RR* /\ C e. RR* ) ) | 
						
							| 67 | 11 | adantr |  |-  ( ( ph /\ ( A < B /\ B < C ) ) -> B e. RR ) | 
						
							| 68 | 67 | leidd |  |-  ( ( ph /\ ( A < B /\ B < C ) ) -> B <_ B ) | 
						
							| 69 |  | ioodisj |  |-  ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( B e. RR* /\ C e. RR* ) ) /\ B <_ B ) -> ( ( A (,) B ) i^i ( B (,) C ) ) = (/) ) | 
						
							| 70 | 64 66 68 69 | syl21anc |  |-  ( ( ph /\ ( A < B /\ B < C ) ) -> ( ( A (,) B ) i^i ( B (,) C ) ) = (/) ) | 
						
							| 71 |  | incom |  |-  ( { B } i^i ( B (,) C ) ) = ( ( B (,) C ) i^i { B } ) | 
						
							| 72 | 67 | ltnrd |  |-  ( ( ph /\ ( A < B /\ B < C ) ) -> -. B < B ) | 
						
							| 73 |  | eliooord |  |-  ( B e. ( B (,) C ) -> ( B < B /\ B < C ) ) | 
						
							| 74 | 73 | simpld |  |-  ( B e. ( B (,) C ) -> B < B ) | 
						
							| 75 | 72 74 | nsyl |  |-  ( ( ph /\ ( A < B /\ B < C ) ) -> -. B e. ( B (,) C ) ) | 
						
							| 76 |  | disjsn |  |-  ( ( ( B (,) C ) i^i { B } ) = (/) <-> -. B e. ( B (,) C ) ) | 
						
							| 77 | 75 76 | sylibr |  |-  ( ( ph /\ ( A < B /\ B < C ) ) -> ( ( B (,) C ) i^i { B } ) = (/) ) | 
						
							| 78 | 71 77 | eqtrid |  |-  ( ( ph /\ ( A < B /\ B < C ) ) -> ( { B } i^i ( B (,) C ) ) = (/) ) | 
						
							| 79 | 70 78 | uneq12d |  |-  ( ( ph /\ ( A < B /\ B < C ) ) -> ( ( ( A (,) B ) i^i ( B (,) C ) ) u. ( { B } i^i ( B (,) C ) ) ) = ( (/) u. (/) ) ) | 
						
							| 80 |  | un0 |  |-  ( (/) u. (/) ) = (/) | 
						
							| 81 | 79 80 | eqtrdi |  |-  ( ( ph /\ ( A < B /\ B < C ) ) -> ( ( ( A (,) B ) i^i ( B (,) C ) ) u. ( { B } i^i ( B (,) C ) ) ) = (/) ) | 
						
							| 82 | 61 81 | eqtrid |  |-  ( ( ph /\ ( A < B /\ B < C ) ) -> ( ( ( A (,) B ) u. { B } ) i^i ( B (,) C ) ) = (/) ) | 
						
							| 83 | 82 | fveq2d |  |-  ( ( ph /\ ( A < B /\ B < C ) ) -> ( vol* ` ( ( ( A (,) B ) u. { B } ) i^i ( B (,) C ) ) ) = ( vol* ` (/) ) ) | 
						
							| 84 |  | ovol0 |  |-  ( vol* ` (/) ) = 0 | 
						
							| 85 | 83 84 | eqtrdi |  |-  ( ( ph /\ ( A < B /\ B < C ) ) -> ( vol* ` ( ( ( A (,) B ) u. { B } ) i^i ( B (,) C ) ) ) = 0 ) | 
						
							| 86 | 15 62 41 | 3jca |  |-  ( ph -> ( A e. RR* /\ B e. RR* /\ C e. RR* ) ) | 
						
							| 87 |  | ioojoin |  |-  ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( A < B /\ B < C ) ) -> ( ( ( A (,) B ) u. { B } ) u. ( B (,) C ) ) = ( A (,) C ) ) | 
						
							| 88 | 86 87 | sylan |  |-  ( ( ph /\ ( A < B /\ B < C ) ) -> ( ( ( A (,) B ) u. { B } ) u. ( B (,) C ) ) = ( A (,) C ) ) | 
						
							| 89 | 88 | eqcomd |  |-  ( ( ph /\ ( A < B /\ B < C ) ) -> ( A (,) C ) = ( ( ( A (,) B ) u. { B } ) u. ( B (,) C ) ) ) | 
						
							| 90 | 4 | adantlr |  |-  ( ( ( ph /\ ( A < B /\ B < C ) ) /\ x e. ( A (,) C ) ) -> D e. CC ) | 
						
							| 91 | 5 | adantr |  |-  ( ( ph /\ ( A < B /\ B < C ) ) -> ( x e. ( A (,) B ) |-> D ) e. L^1 ) | 
						
							| 92 |  | ssun1 |  |-  ( A (,) B ) C_ ( ( A (,) B ) u. { B } ) | 
						
							| 93 | 92 | a1i |  |-  ( ( ph /\ ( A < B /\ B < C ) ) -> ( A (,) B ) C_ ( ( A (,) B ) u. { B } ) ) | 
						
							| 94 |  | ioossre |  |-  ( A (,) B ) C_ RR | 
						
							| 95 | 94 | a1i |  |-  ( ( ph /\ ( A < B /\ B < C ) ) -> ( A (,) B ) C_ RR ) | 
						
							| 96 | 67 | snssd |  |-  ( ( ph /\ ( A < B /\ B < C ) ) -> { B } C_ RR ) | 
						
							| 97 | 95 96 | unssd |  |-  ( ( ph /\ ( A < B /\ B < C ) ) -> ( ( A (,) B ) u. { B } ) C_ RR ) | 
						
							| 98 |  | uncom |  |-  ( ( A (,) B ) u. { B } ) = ( { B } u. ( A (,) B ) ) | 
						
							| 99 | 98 | difeq1i |  |-  ( ( ( A (,) B ) u. { B } ) \ ( A (,) B ) ) = ( ( { B } u. ( A (,) B ) ) \ ( A (,) B ) ) | 
						
							| 100 |  | difun2 |  |-  ( ( { B } u. ( A (,) B ) ) \ ( A (,) B ) ) = ( { B } \ ( A (,) B ) ) | 
						
							| 101 | 99 100 | eqtri |  |-  ( ( ( A (,) B ) u. { B } ) \ ( A (,) B ) ) = ( { B } \ ( A (,) B ) ) | 
						
							| 102 |  | difss |  |-  ( { B } \ ( A (,) B ) ) C_ { B } | 
						
							| 103 | 101 102 | eqsstri |  |-  ( ( ( A (,) B ) u. { B } ) \ ( A (,) B ) ) C_ { B } | 
						
							| 104 |  | ovolsn |  |-  ( B e. RR -> ( vol* ` { B } ) = 0 ) | 
						
							| 105 | 67 104 | syl |  |-  ( ( ph /\ ( A < B /\ B < C ) ) -> ( vol* ` { B } ) = 0 ) | 
						
							| 106 |  | ovolssnul |  |-  ( ( ( ( ( A (,) B ) u. { B } ) \ ( A (,) B ) ) C_ { B } /\ { B } C_ RR /\ ( vol* ` { B } ) = 0 ) -> ( vol* ` ( ( ( A (,) B ) u. { B } ) \ ( A (,) B ) ) ) = 0 ) | 
						
							| 107 | 103 96 105 106 | mp3an2i |  |-  ( ( ph /\ ( A < B /\ B < C ) ) -> ( vol* ` ( ( ( A (,) B ) u. { B } ) \ ( A (,) B ) ) ) = 0 ) | 
						
							| 108 |  | ssun1 |  |-  ( ( A (,) B ) u. { B } ) C_ ( ( ( A (,) B ) u. { B } ) u. ( B (,) C ) ) | 
						
							| 109 | 108 88 | sseqtrid |  |-  ( ( ph /\ ( A < B /\ B < C ) ) -> ( ( A (,) B ) u. { B } ) C_ ( A (,) C ) ) | 
						
							| 110 | 109 | sselda |  |-  ( ( ( ph /\ ( A < B /\ B < C ) ) /\ x e. ( ( A (,) B ) u. { B } ) ) -> x e. ( A (,) C ) ) | 
						
							| 111 | 110 90 | syldan |  |-  ( ( ( ph /\ ( A < B /\ B < C ) ) /\ x e. ( ( A (,) B ) u. { B } ) ) -> D e. CC ) | 
						
							| 112 | 93 97 107 111 | itgss3 |  |-  ( ( ph /\ ( A < B /\ B < C ) ) -> ( ( ( x e. ( A (,) B ) |-> D ) e. L^1 <-> ( x e. ( ( A (,) B ) u. { B } ) |-> D ) e. L^1 ) /\ S. ( A (,) B ) D _d x = S. ( ( A (,) B ) u. { B } ) D _d x ) ) | 
						
							| 113 | 112 | simpld |  |-  ( ( ph /\ ( A < B /\ B < C ) ) -> ( ( x e. ( A (,) B ) |-> D ) e. L^1 <-> ( x e. ( ( A (,) B ) u. { B } ) |-> D ) e. L^1 ) ) | 
						
							| 114 | 91 113 | mpbid |  |-  ( ( ph /\ ( A < B /\ B < C ) ) -> ( x e. ( ( A (,) B ) u. { B } ) |-> D ) e. L^1 ) | 
						
							| 115 | 6 | adantr |  |-  ( ( ph /\ ( A < B /\ B < C ) ) -> ( x e. ( B (,) C ) |-> D ) e. L^1 ) | 
						
							| 116 | 85 89 90 114 115 | itgsplit |  |-  ( ( ph /\ ( A < B /\ B < C ) ) -> S. ( A (,) C ) D _d x = ( S. ( ( A (,) B ) u. { B } ) D _d x + S. ( B (,) C ) D _d x ) ) | 
						
							| 117 | 112 | simprd |  |-  ( ( ph /\ ( A < B /\ B < C ) ) -> S. ( A (,) B ) D _d x = S. ( ( A (,) B ) u. { B } ) D _d x ) | 
						
							| 118 | 117 | oveq1d |  |-  ( ( ph /\ ( A < B /\ B < C ) ) -> ( S. ( A (,) B ) D _d x + S. ( B (,) C ) D _d x ) = ( S. ( ( A (,) B ) u. { B } ) D _d x + S. ( B (,) C ) D _d x ) ) | 
						
							| 119 | 116 118 | eqtr4d |  |-  ( ( ph /\ ( A < B /\ B < C ) ) -> S. ( A (,) C ) D _d x = ( S. ( A (,) B ) D _d x + S. ( B (,) C ) D _d x ) ) | 
						
							| 120 | 119 | ex |  |-  ( ph -> ( ( A < B /\ B < C ) -> S. ( A (,) C ) D _d x = ( S. ( A (,) B ) D _d x + S. ( B (,) C ) D _d x ) ) ) | 
						
							| 121 | 36 60 120 | ecased |  |-  ( ph -> S. ( A (,) C ) D _d x = ( S. ( A (,) B ) D _d x + S. ( B (,) C ) D _d x ) ) |