| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itgss3.1 |  |-  ( ph -> A C_ B ) | 
						
							| 2 |  | itgss3.2 |  |-  ( ph -> B C_ RR ) | 
						
							| 3 |  | itgss3.3 |  |-  ( ph -> ( vol* ` ( B \ A ) ) = 0 ) | 
						
							| 4 |  | itgss3.4 |  |-  ( ( ph /\ x e. B ) -> C e. CC ) | 
						
							| 5 |  | nfcv |  |-  F/_ y if ( x e. A , C , 0 ) | 
						
							| 6 |  | nfv |  |-  F/ x y e. A | 
						
							| 7 |  | nfcsb1v |  |-  F/_ x [_ y / x ]_ C | 
						
							| 8 |  | nfcv |  |-  F/_ x 0 | 
						
							| 9 | 6 7 8 | nfif |  |-  F/_ x if ( y e. A , [_ y / x ]_ C , 0 ) | 
						
							| 10 |  | eleq1w |  |-  ( x = y -> ( x e. A <-> y e. A ) ) | 
						
							| 11 |  | csbeq1a |  |-  ( x = y -> C = [_ y / x ]_ C ) | 
						
							| 12 | 10 11 | ifbieq1d |  |-  ( x = y -> if ( x e. A , C , 0 ) = if ( y e. A , [_ y / x ]_ C , 0 ) ) | 
						
							| 13 | 5 9 12 | cbvmpt |  |-  ( x e. B |-> if ( x e. A , C , 0 ) ) = ( y e. B |-> if ( y e. A , [_ y / x ]_ C , 0 ) ) | 
						
							| 14 | 1 | adantr |  |-  ( ( ph /\ ( x e. A |-> C ) e. L^1 ) -> A C_ B ) | 
						
							| 15 |  | nfcv |  |-  F/_ y C | 
						
							| 16 | 15 7 11 | cbvmpt |  |-  ( x e. A |-> C ) = ( y e. A |-> [_ y / x ]_ C ) | 
						
							| 17 |  | iftrue |  |-  ( y e. A -> if ( y e. A , [_ y / x ]_ C , 0 ) = [_ y / x ]_ C ) | 
						
							| 18 | 17 | mpteq2ia |  |-  ( y e. A |-> if ( y e. A , [_ y / x ]_ C , 0 ) ) = ( y e. A |-> [_ y / x ]_ C ) | 
						
							| 19 | 16 18 | eqtr4i |  |-  ( x e. A |-> C ) = ( y e. A |-> if ( y e. A , [_ y / x ]_ C , 0 ) ) | 
						
							| 20 |  | simpr |  |-  ( ( ph /\ ( x e. A |-> C ) e. L^1 ) -> ( x e. A |-> C ) e. L^1 ) | 
						
							| 21 | 19 20 | eqeltrrid |  |-  ( ( ph /\ ( x e. A |-> C ) e. L^1 ) -> ( y e. A |-> if ( y e. A , [_ y / x ]_ C , 0 ) ) e. L^1 ) | 
						
							| 22 |  | iblmbf |  |-  ( ( y e. A |-> if ( y e. A , [_ y / x ]_ C , 0 ) ) e. L^1 -> ( y e. A |-> if ( y e. A , [_ y / x ]_ C , 0 ) ) e. MblFn ) | 
						
							| 23 | 21 22 | syl |  |-  ( ( ph /\ ( x e. A |-> C ) e. L^1 ) -> ( y e. A |-> if ( y e. A , [_ y / x ]_ C , 0 ) ) e. MblFn ) | 
						
							| 24 | 1 | sselda |  |-  ( ( ph /\ x e. A ) -> x e. B ) | 
						
							| 25 | 24 4 | syldan |  |-  ( ( ph /\ x e. A ) -> C e. CC ) | 
						
							| 26 | 25 | fmpttd |  |-  ( ph -> ( x e. A |-> C ) : A --> CC ) | 
						
							| 27 | 26 | adantr |  |-  ( ( ph /\ ( x e. A |-> C ) e. L^1 ) -> ( x e. A |-> C ) : A --> CC ) | 
						
							| 28 | 19 | feq1i |  |-  ( ( x e. A |-> C ) : A --> CC <-> ( y e. A |-> if ( y e. A , [_ y / x ]_ C , 0 ) ) : A --> CC ) | 
						
							| 29 | 27 28 | sylib |  |-  ( ( ph /\ ( x e. A |-> C ) e. L^1 ) -> ( y e. A |-> if ( y e. A , [_ y / x ]_ C , 0 ) ) : A --> CC ) | 
						
							| 30 | 29 | fvmptelcdm |  |-  ( ( ( ph /\ ( x e. A |-> C ) e. L^1 ) /\ y e. A ) -> if ( y e. A , [_ y / x ]_ C , 0 ) e. CC ) | 
						
							| 31 | 23 30 | mbfdm2 |  |-  ( ( ph /\ ( x e. A |-> C ) e. L^1 ) -> A e. dom vol ) | 
						
							| 32 |  | undif |  |-  ( A C_ B <-> ( A u. ( B \ A ) ) = B ) | 
						
							| 33 | 1 32 | sylib |  |-  ( ph -> ( A u. ( B \ A ) ) = B ) | 
						
							| 34 | 33 | adantr |  |-  ( ( ph /\ A e. dom vol ) -> ( A u. ( B \ A ) ) = B ) | 
						
							| 35 |  | id |  |-  ( A e. dom vol -> A e. dom vol ) | 
						
							| 36 | 2 | ssdifssd |  |-  ( ph -> ( B \ A ) C_ RR ) | 
						
							| 37 |  | nulmbl |  |-  ( ( ( B \ A ) C_ RR /\ ( vol* ` ( B \ A ) ) = 0 ) -> ( B \ A ) e. dom vol ) | 
						
							| 38 | 36 3 37 | syl2anc |  |-  ( ph -> ( B \ A ) e. dom vol ) | 
						
							| 39 |  | unmbl |  |-  ( ( A e. dom vol /\ ( B \ A ) e. dom vol ) -> ( A u. ( B \ A ) ) e. dom vol ) | 
						
							| 40 | 35 38 39 | syl2anr |  |-  ( ( ph /\ A e. dom vol ) -> ( A u. ( B \ A ) ) e. dom vol ) | 
						
							| 41 | 34 40 | eqeltrrd |  |-  ( ( ph /\ A e. dom vol ) -> B e. dom vol ) | 
						
							| 42 | 31 41 | syldan |  |-  ( ( ph /\ ( x e. A |-> C ) e. L^1 ) -> B e. dom vol ) | 
						
							| 43 |  | eldifn |  |-  ( y e. ( B \ A ) -> -. y e. A ) | 
						
							| 44 | 43 | adantl |  |-  ( ( ( ph /\ ( x e. A |-> C ) e. L^1 ) /\ y e. ( B \ A ) ) -> -. y e. A ) | 
						
							| 45 | 44 | iffalsed |  |-  ( ( ( ph /\ ( x e. A |-> C ) e. L^1 ) /\ y e. ( B \ A ) ) -> if ( y e. A , [_ y / x ]_ C , 0 ) = 0 ) | 
						
							| 46 | 14 42 30 45 21 | iblss2 |  |-  ( ( ph /\ ( x e. A |-> C ) e. L^1 ) -> ( y e. B |-> if ( y e. A , [_ y / x ]_ C , 0 ) ) e. L^1 ) | 
						
							| 47 | 13 46 | eqeltrid |  |-  ( ( ph /\ ( x e. A |-> C ) e. L^1 ) -> ( x e. B |-> if ( x e. A , C , 0 ) ) e. L^1 ) | 
						
							| 48 |  | iftrue |  |-  ( x e. A -> if ( x e. A , C , 0 ) = C ) | 
						
							| 49 | 48 | mpteq2ia |  |-  ( x e. A |-> if ( x e. A , C , 0 ) ) = ( x e. A |-> C ) | 
						
							| 50 | 5 9 12 | cbvmpt |  |-  ( x e. A |-> if ( x e. A , C , 0 ) ) = ( y e. A |-> if ( y e. A , [_ y / x ]_ C , 0 ) ) | 
						
							| 51 | 49 50 | eqtr3i |  |-  ( x e. A |-> C ) = ( y e. A |-> if ( y e. A , [_ y / x ]_ C , 0 ) ) | 
						
							| 52 | 1 | adantr |  |-  ( ( ph /\ ( x e. B |-> if ( x e. A , C , 0 ) ) e. L^1 ) -> A C_ B ) | 
						
							| 53 |  | simpr |  |-  ( ( ph /\ ( x e. B |-> if ( x e. A , C , 0 ) ) e. L^1 ) -> ( x e. B |-> if ( x e. A , C , 0 ) ) e. L^1 ) | 
						
							| 54 | 13 53 | eqeltrrid |  |-  ( ( ph /\ ( x e. B |-> if ( x e. A , C , 0 ) ) e. L^1 ) -> ( y e. B |-> if ( y e. A , [_ y / x ]_ C , 0 ) ) e. L^1 ) | 
						
							| 55 |  | iblmbf |  |-  ( ( y e. B |-> if ( y e. A , [_ y / x ]_ C , 0 ) ) e. L^1 -> ( y e. B |-> if ( y e. A , [_ y / x ]_ C , 0 ) ) e. MblFn ) | 
						
							| 56 | 54 55 | syl |  |-  ( ( ph /\ ( x e. B |-> if ( x e. A , C , 0 ) ) e. L^1 ) -> ( y e. B |-> if ( y e. A , [_ y / x ]_ C , 0 ) ) e. MblFn ) | 
						
							| 57 |  | 0cn |  |-  0 e. CC | 
						
							| 58 |  | ifcl |  |-  ( ( C e. CC /\ 0 e. CC ) -> if ( x e. A , C , 0 ) e. CC ) | 
						
							| 59 | 4 57 58 | sylancl |  |-  ( ( ph /\ x e. B ) -> if ( x e. A , C , 0 ) e. CC ) | 
						
							| 60 | 59 | fmpttd |  |-  ( ph -> ( x e. B |-> if ( x e. A , C , 0 ) ) : B --> CC ) | 
						
							| 61 | 13 | feq1i |  |-  ( ( x e. B |-> if ( x e. A , C , 0 ) ) : B --> CC <-> ( y e. B |-> if ( y e. A , [_ y / x ]_ C , 0 ) ) : B --> CC ) | 
						
							| 62 | 60 61 | sylib |  |-  ( ph -> ( y e. B |-> if ( y e. A , [_ y / x ]_ C , 0 ) ) : B --> CC ) | 
						
							| 63 | 62 | adantr |  |-  ( ( ph /\ ( x e. B |-> if ( x e. A , C , 0 ) ) e. L^1 ) -> ( y e. B |-> if ( y e. A , [_ y / x ]_ C , 0 ) ) : B --> CC ) | 
						
							| 64 | 63 | fvmptelcdm |  |-  ( ( ( ph /\ ( x e. B |-> if ( x e. A , C , 0 ) ) e. L^1 ) /\ y e. B ) -> if ( y e. A , [_ y / x ]_ C , 0 ) e. CC ) | 
						
							| 65 | 56 64 | mbfdm2 |  |-  ( ( ph /\ ( x e. B |-> if ( x e. A , C , 0 ) ) e. L^1 ) -> B e. dom vol ) | 
						
							| 66 |  | dfss4 |  |-  ( A C_ B <-> ( B \ ( B \ A ) ) = A ) | 
						
							| 67 | 1 66 | sylib |  |-  ( ph -> ( B \ ( B \ A ) ) = A ) | 
						
							| 68 | 67 | adantr |  |-  ( ( ph /\ B e. dom vol ) -> ( B \ ( B \ A ) ) = A ) | 
						
							| 69 |  | id |  |-  ( B e. dom vol -> B e. dom vol ) | 
						
							| 70 |  | difmbl |  |-  ( ( B e. dom vol /\ ( B \ A ) e. dom vol ) -> ( B \ ( B \ A ) ) e. dom vol ) | 
						
							| 71 | 69 38 70 | syl2anr |  |-  ( ( ph /\ B e. dom vol ) -> ( B \ ( B \ A ) ) e. dom vol ) | 
						
							| 72 | 68 71 | eqeltrrd |  |-  ( ( ph /\ B e. dom vol ) -> A e. dom vol ) | 
						
							| 73 | 65 72 | syldan |  |-  ( ( ph /\ ( x e. B |-> if ( x e. A , C , 0 ) ) e. L^1 ) -> A e. dom vol ) | 
						
							| 74 | 52 73 64 54 | iblss |  |-  ( ( ph /\ ( x e. B |-> if ( x e. A , C , 0 ) ) e. L^1 ) -> ( y e. A |-> if ( y e. A , [_ y / x ]_ C , 0 ) ) e. L^1 ) | 
						
							| 75 | 51 74 | eqeltrid |  |-  ( ( ph /\ ( x e. B |-> if ( x e. A , C , 0 ) ) e. L^1 ) -> ( x e. A |-> C ) e. L^1 ) | 
						
							| 76 | 47 75 | impbida |  |-  ( ph -> ( ( x e. A |-> C ) e. L^1 <-> ( x e. B |-> if ( x e. A , C , 0 ) ) e. L^1 ) ) | 
						
							| 77 | 67 | eleq2d |  |-  ( ph -> ( x e. ( B \ ( B \ A ) ) <-> x e. A ) ) | 
						
							| 78 | 77 | biimpa |  |-  ( ( ph /\ x e. ( B \ ( B \ A ) ) ) -> x e. A ) | 
						
							| 79 | 78 48 | syl |  |-  ( ( ph /\ x e. ( B \ ( B \ A ) ) ) -> if ( x e. A , C , 0 ) = C ) | 
						
							| 80 | 59 4 36 3 79 | itgeqa |  |-  ( ph -> ( ( ( x e. B |-> if ( x e. A , C , 0 ) ) e. L^1 <-> ( x e. B |-> C ) e. L^1 ) /\ S. B if ( x e. A , C , 0 ) _d x = S. B C _d x ) ) | 
						
							| 81 | 80 | simpld |  |-  ( ph -> ( ( x e. B |-> if ( x e. A , C , 0 ) ) e. L^1 <-> ( x e. B |-> C ) e. L^1 ) ) | 
						
							| 82 | 76 81 | bitrd |  |-  ( ph -> ( ( x e. A |-> C ) e. L^1 <-> ( x e. B |-> C ) e. L^1 ) ) | 
						
							| 83 |  | itgss2 |  |-  ( A C_ B -> S. A C _d x = S. B if ( x e. A , C , 0 ) _d x ) | 
						
							| 84 | 1 83 | syl |  |-  ( ph -> S. A C _d x = S. B if ( x e. A , C , 0 ) _d x ) | 
						
							| 85 | 80 | simprd |  |-  ( ph -> S. B if ( x e. A , C , 0 ) _d x = S. B C _d x ) | 
						
							| 86 | 84 85 | eqtrd |  |-  ( ph -> S. A C _d x = S. B C _d x ) | 
						
							| 87 | 82 86 | jca |  |-  ( ph -> ( ( ( x e. A |-> C ) e. L^1 <-> ( x e. B |-> C ) e. L^1 ) /\ S. A C _d x = S. B C _d x ) ) |