Step |
Hyp |
Ref |
Expression |
1 |
|
itgadd.1 |
|- ( ( ph /\ x e. A ) -> B e. V ) |
2 |
|
itgadd.2 |
|- ( ph -> ( x e. A |-> B ) e. L^1 ) |
3 |
|
itgadd.3 |
|- ( ( ph /\ x e. A ) -> C e. V ) |
4 |
|
itgadd.4 |
|- ( ph -> ( x e. A |-> C ) e. L^1 ) |
5 |
|
iblmbf |
|- ( ( x e. A |-> B ) e. L^1 -> ( x e. A |-> B ) e. MblFn ) |
6 |
2 5
|
syl |
|- ( ph -> ( x e. A |-> B ) e. MblFn ) |
7 |
6 1
|
mbfmptcl |
|- ( ( ph /\ x e. A ) -> B e. CC ) |
8 |
|
iblmbf |
|- ( ( x e. A |-> C ) e. L^1 -> ( x e. A |-> C ) e. MblFn ) |
9 |
4 8
|
syl |
|- ( ph -> ( x e. A |-> C ) e. MblFn ) |
10 |
9 3
|
mbfmptcl |
|- ( ( ph /\ x e. A ) -> C e. CC ) |
11 |
10
|
negcld |
|- ( ( ph /\ x e. A ) -> -u C e. CC ) |
12 |
3 4
|
iblneg |
|- ( ph -> ( x e. A |-> -u C ) e. L^1 ) |
13 |
7 2 11 12
|
itgadd |
|- ( ph -> S. A ( B + -u C ) _d x = ( S. A B _d x + S. A -u C _d x ) ) |
14 |
3 4
|
itgneg |
|- ( ph -> -u S. A C _d x = S. A -u C _d x ) |
15 |
14
|
oveq2d |
|- ( ph -> ( S. A B _d x + -u S. A C _d x ) = ( S. A B _d x + S. A -u C _d x ) ) |
16 |
13 15
|
eqtr4d |
|- ( ph -> S. A ( B + -u C ) _d x = ( S. A B _d x + -u S. A C _d x ) ) |
17 |
7 10
|
negsubd |
|- ( ( ph /\ x e. A ) -> ( B + -u C ) = ( B - C ) ) |
18 |
17
|
itgeq2dv |
|- ( ph -> S. A ( B + -u C ) _d x = S. A ( B - C ) _d x ) |
19 |
1 2
|
itgcl |
|- ( ph -> S. A B _d x e. CC ) |
20 |
3 4
|
itgcl |
|- ( ph -> S. A C _d x e. CC ) |
21 |
19 20
|
negsubd |
|- ( ph -> ( S. A B _d x + -u S. A C _d x ) = ( S. A B _d x - S. A C _d x ) ) |
22 |
16 18 21
|
3eqtr3d |
|- ( ph -> S. A ( B - C ) _d x = ( S. A B _d x - S. A C _d x ) ) |