Metamath Proof Explorer


Theorem itgsubsticc

Description: Integration by u-substitution. The main difference with respect to itgsubst is that here we consider the range of A ( x ) to be in the closed interval ( K , L ) . If A ( x ) is a continuous, differentiable function from [ X , Y ] to ( Z , W ) , whose derivative is continuous and integrable, and C ( u ) is a continuous function on ( Z , W ) , then the integral of C ( u ) from K = A ( X ) to L = A ( Y ) is equal to the integral of C ( A ( x ) ) _D A ( x ) from X to Y . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses itgsubsticc.1
|- ( ph -> X e. RR )
itgsubsticc.2
|- ( ph -> Y e. RR )
itgsubsticc.3
|- ( ph -> X <_ Y )
itgsubsticc.4
|- ( ph -> ( x e. ( X [,] Y ) |-> A ) e. ( ( X [,] Y ) -cn-> ( K [,] L ) ) )
itgsubsticc.5
|- ( ph -> ( u e. ( K [,] L ) |-> C ) e. ( ( K [,] L ) -cn-> CC ) )
itgsubsticc.6
|- ( ph -> ( x e. ( X (,) Y ) |-> B ) e. ( ( ( X (,) Y ) -cn-> CC ) i^i L^1 ) )
itgsubsticc.7
|- ( ph -> ( RR _D ( x e. ( X [,] Y ) |-> A ) ) = ( x e. ( X (,) Y ) |-> B ) )
itgsubsticc.8
|- ( u = A -> C = E )
itgsubsticc.9
|- ( x = X -> A = K )
itgsubsticc.10
|- ( x = Y -> A = L )
itgsubsticc.11
|- ( ph -> K e. RR )
itgsubsticc.12
|- ( ph -> L e. RR )
Assertion itgsubsticc
|- ( ph -> S_ [ K -> L ] C _d u = S_ [ X -> Y ] ( E x. B ) _d x )

Proof

Step Hyp Ref Expression
1 itgsubsticc.1
 |-  ( ph -> X e. RR )
2 itgsubsticc.2
 |-  ( ph -> Y e. RR )
3 itgsubsticc.3
 |-  ( ph -> X <_ Y )
4 itgsubsticc.4
 |-  ( ph -> ( x e. ( X [,] Y ) |-> A ) e. ( ( X [,] Y ) -cn-> ( K [,] L ) ) )
5 itgsubsticc.5
 |-  ( ph -> ( u e. ( K [,] L ) |-> C ) e. ( ( K [,] L ) -cn-> CC ) )
6 itgsubsticc.6
 |-  ( ph -> ( x e. ( X (,) Y ) |-> B ) e. ( ( ( X (,) Y ) -cn-> CC ) i^i L^1 ) )
7 itgsubsticc.7
 |-  ( ph -> ( RR _D ( x e. ( X [,] Y ) |-> A ) ) = ( x e. ( X (,) Y ) |-> B ) )
8 itgsubsticc.8
 |-  ( u = A -> C = E )
9 itgsubsticc.9
 |-  ( x = X -> A = K )
10 itgsubsticc.10
 |-  ( x = Y -> A = L )
11 itgsubsticc.11
 |-  ( ph -> K e. RR )
12 itgsubsticc.12
 |-  ( ph -> L e. RR )
13 eqid
 |-  ( u e. ( K [,] L ) |-> C ) = ( u e. ( K [,] L ) |-> C )
14 eqid
 |-  ( u e. RR |-> if ( u e. ( K [,] L ) , ( ( u e. ( K [,] L ) |-> C ) ` u ) , if ( u < K , ( ( u e. ( K [,] L ) |-> C ) ` K ) , ( ( u e. ( K [,] L ) |-> C ) ` L ) ) ) ) = ( u e. RR |-> if ( u e. ( K [,] L ) , ( ( u e. ( K [,] L ) |-> C ) ` u ) , if ( u < K , ( ( u e. ( K [,] L ) |-> C ) ` K ) , ( ( u e. ( K [,] L ) |-> C ) ` L ) ) ) )
15 eqidd
 |-  ( ph -> ( x e. ( X [,] Y ) |-> A ) = ( x e. ( X [,] Y ) |-> A ) )
16 10 adantl
 |-  ( ( ph /\ x = Y ) -> A = L )
17 1 rexrd
 |-  ( ph -> X e. RR* )
18 2 rexrd
 |-  ( ph -> Y e. RR* )
19 ubicc2
 |-  ( ( X e. RR* /\ Y e. RR* /\ X <_ Y ) -> Y e. ( X [,] Y ) )
20 17 18 3 19 syl3anc
 |-  ( ph -> Y e. ( X [,] Y ) )
21 15 16 20 12 fvmptd
 |-  ( ph -> ( ( x e. ( X [,] Y ) |-> A ) ` Y ) = L )
22 cncff
 |-  ( ( x e. ( X [,] Y ) |-> A ) e. ( ( X [,] Y ) -cn-> ( K [,] L ) ) -> ( x e. ( X [,] Y ) |-> A ) : ( X [,] Y ) --> ( K [,] L ) )
23 4 22 syl
 |-  ( ph -> ( x e. ( X [,] Y ) |-> A ) : ( X [,] Y ) --> ( K [,] L ) )
24 23 20 ffvelrnd
 |-  ( ph -> ( ( x e. ( X [,] Y ) |-> A ) ` Y ) e. ( K [,] L ) )
25 21 24 eqeltrrd
 |-  ( ph -> L e. ( K [,] L ) )
26 elicc2
 |-  ( ( K e. RR /\ L e. RR ) -> ( L e. ( K [,] L ) <-> ( L e. RR /\ K <_ L /\ L <_ L ) ) )
27 11 12 26 syl2anc
 |-  ( ph -> ( L e. ( K [,] L ) <-> ( L e. RR /\ K <_ L /\ L <_ L ) ) )
28 25 27 mpbid
 |-  ( ph -> ( L e. RR /\ K <_ L /\ L <_ L ) )
29 28 simp2d
 |-  ( ph -> K <_ L )
30 13 14 1 2 3 4 6 5 11 12 29 7 8 9 10 itgsubsticclem
 |-  ( ph -> S_ [ K -> L ] C _d u = S_ [ X -> Y ] ( E x. B ) _d x )