Step |
Hyp |
Ref |
Expression |
1 |
|
itgsubsticc.1 |
|- ( ph -> X e. RR ) |
2 |
|
itgsubsticc.2 |
|- ( ph -> Y e. RR ) |
3 |
|
itgsubsticc.3 |
|- ( ph -> X <_ Y ) |
4 |
|
itgsubsticc.4 |
|- ( ph -> ( x e. ( X [,] Y ) |-> A ) e. ( ( X [,] Y ) -cn-> ( K [,] L ) ) ) |
5 |
|
itgsubsticc.5 |
|- ( ph -> ( u e. ( K [,] L ) |-> C ) e. ( ( K [,] L ) -cn-> CC ) ) |
6 |
|
itgsubsticc.6 |
|- ( ph -> ( x e. ( X (,) Y ) |-> B ) e. ( ( ( X (,) Y ) -cn-> CC ) i^i L^1 ) ) |
7 |
|
itgsubsticc.7 |
|- ( ph -> ( RR _D ( x e. ( X [,] Y ) |-> A ) ) = ( x e. ( X (,) Y ) |-> B ) ) |
8 |
|
itgsubsticc.8 |
|- ( u = A -> C = E ) |
9 |
|
itgsubsticc.9 |
|- ( x = X -> A = K ) |
10 |
|
itgsubsticc.10 |
|- ( x = Y -> A = L ) |
11 |
|
itgsubsticc.11 |
|- ( ph -> K e. RR ) |
12 |
|
itgsubsticc.12 |
|- ( ph -> L e. RR ) |
13 |
|
eqid |
|- ( u e. ( K [,] L ) |-> C ) = ( u e. ( K [,] L ) |-> C ) |
14 |
|
eqid |
|- ( u e. RR |-> if ( u e. ( K [,] L ) , ( ( u e. ( K [,] L ) |-> C ) ` u ) , if ( u < K , ( ( u e. ( K [,] L ) |-> C ) ` K ) , ( ( u e. ( K [,] L ) |-> C ) ` L ) ) ) ) = ( u e. RR |-> if ( u e. ( K [,] L ) , ( ( u e. ( K [,] L ) |-> C ) ` u ) , if ( u < K , ( ( u e. ( K [,] L ) |-> C ) ` K ) , ( ( u e. ( K [,] L ) |-> C ) ` L ) ) ) ) |
15 |
|
eqidd |
|- ( ph -> ( x e. ( X [,] Y ) |-> A ) = ( x e. ( X [,] Y ) |-> A ) ) |
16 |
10
|
adantl |
|- ( ( ph /\ x = Y ) -> A = L ) |
17 |
1
|
rexrd |
|- ( ph -> X e. RR* ) |
18 |
2
|
rexrd |
|- ( ph -> Y e. RR* ) |
19 |
|
ubicc2 |
|- ( ( X e. RR* /\ Y e. RR* /\ X <_ Y ) -> Y e. ( X [,] Y ) ) |
20 |
17 18 3 19
|
syl3anc |
|- ( ph -> Y e. ( X [,] Y ) ) |
21 |
15 16 20 12
|
fvmptd |
|- ( ph -> ( ( x e. ( X [,] Y ) |-> A ) ` Y ) = L ) |
22 |
|
cncff |
|- ( ( x e. ( X [,] Y ) |-> A ) e. ( ( X [,] Y ) -cn-> ( K [,] L ) ) -> ( x e. ( X [,] Y ) |-> A ) : ( X [,] Y ) --> ( K [,] L ) ) |
23 |
4 22
|
syl |
|- ( ph -> ( x e. ( X [,] Y ) |-> A ) : ( X [,] Y ) --> ( K [,] L ) ) |
24 |
23 20
|
ffvelrnd |
|- ( ph -> ( ( x e. ( X [,] Y ) |-> A ) ` Y ) e. ( K [,] L ) ) |
25 |
21 24
|
eqeltrrd |
|- ( ph -> L e. ( K [,] L ) ) |
26 |
|
elicc2 |
|- ( ( K e. RR /\ L e. RR ) -> ( L e. ( K [,] L ) <-> ( L e. RR /\ K <_ L /\ L <_ L ) ) ) |
27 |
11 12 26
|
syl2anc |
|- ( ph -> ( L e. ( K [,] L ) <-> ( L e. RR /\ K <_ L /\ L <_ L ) ) ) |
28 |
25 27
|
mpbid |
|- ( ph -> ( L e. RR /\ K <_ L /\ L <_ L ) ) |
29 |
28
|
simp2d |
|- ( ph -> K <_ L ) |
30 |
13 14 1 2 3 4 6 5 11 12 29 7 8 9 10
|
itgsubsticclem |
|- ( ph -> S_ [ K -> L ] C _d u = S_ [ X -> Y ] ( E x. B ) _d x ) |