| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							itgsubsticclem.1 | 
							 |-  F = ( u e. ( K [,] L ) |-> C )  | 
						
						
							| 2 | 
							
								
							 | 
							itgsubsticclem.2 | 
							 |-  G = ( u e. RR |-> if ( u e. ( K [,] L ) , ( F ` u ) , if ( u < K , ( F ` K ) , ( F ` L ) ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							itgsubsticclem.3 | 
							 |-  ( ph -> X e. RR )  | 
						
						
							| 4 | 
							
								
							 | 
							itgsubsticclem.4 | 
							 |-  ( ph -> Y e. RR )  | 
						
						
							| 5 | 
							
								
							 | 
							itgsubsticclem.5 | 
							 |-  ( ph -> X <_ Y )  | 
						
						
							| 6 | 
							
								
							 | 
							itgsubsticclem.6 | 
							 |-  ( ph -> ( x e. ( X [,] Y ) |-> A ) e. ( ( X [,] Y ) -cn-> ( K [,] L ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							itgsubsticclem.7 | 
							 |-  ( ph -> ( x e. ( X (,) Y ) |-> B ) e. ( ( ( X (,) Y ) -cn-> CC ) i^i L^1 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							itgsubsticclem.8 | 
							 |-  ( ph -> F e. ( ( K [,] L ) -cn-> CC ) )  | 
						
						
							| 9 | 
							
								
							 | 
							itgsubsticclem.9 | 
							 |-  ( ph -> K e. RR )  | 
						
						
							| 10 | 
							
								
							 | 
							itgsubsticclem.10 | 
							 |-  ( ph -> L e. RR )  | 
						
						
							| 11 | 
							
								
							 | 
							itgsubsticclem.11 | 
							 |-  ( ph -> K <_ L )  | 
						
						
							| 12 | 
							
								
							 | 
							itgsubsticclem.12 | 
							 |-  ( ph -> ( RR _D ( x e. ( X [,] Y ) |-> A ) ) = ( x e. ( X (,) Y ) |-> B ) )  | 
						
						
							| 13 | 
							
								
							 | 
							itgsubsticclem.13 | 
							 |-  ( u = A -> C = E )  | 
						
						
							| 14 | 
							
								
							 | 
							itgsubsticclem.14 | 
							 |-  ( x = X -> A = K )  | 
						
						
							| 15 | 
							
								
							 | 
							itgsubsticclem.15 | 
							 |-  ( x = Y -> A = L )  | 
						
						
							| 16 | 
							
								
							 | 
							fveq2 | 
							 |-  ( u = w -> ( G ` u ) = ( G ` w ) )  | 
						
						
							| 17 | 
							
								
							 | 
							nfcv | 
							 |-  F/_ w ( G ` u )  | 
						
						
							| 18 | 
							
								
							 | 
							nfmpt1 | 
							 |-  F/_ u ( u e. RR |-> if ( u e. ( K [,] L ) , ( F ` u ) , if ( u < K , ( F ` K ) , ( F ` L ) ) ) )  | 
						
						
							| 19 | 
							
								2 18
							 | 
							nfcxfr | 
							 |-  F/_ u G  | 
						
						
							| 20 | 
							
								
							 | 
							nfcv | 
							 |-  F/_ u w  | 
						
						
							| 21 | 
							
								19 20
							 | 
							nffv | 
							 |-  F/_ u ( G ` w )  | 
						
						
							| 22 | 
							
								16 17 21
							 | 
							cbvditg | 
							 |-  S_ [ K -> L ] ( G ` u ) _d u = S_ [ K -> L ] ( G ` w ) _d w  | 
						
						
							| 23 | 
							
								9 10
							 | 
							iccssred | 
							 |-  ( ph -> ( K [,] L ) C_ RR )  | 
						
						
							| 24 | 
							
								23
							 | 
							adantr | 
							 |-  ( ( ph /\ u e. ( K (,) L ) ) -> ( K [,] L ) C_ RR )  | 
						
						
							| 25 | 
							
								
							 | 
							ioossicc | 
							 |-  ( K (,) L ) C_ ( K [,] L )  | 
						
						
							| 26 | 
							
								25
							 | 
							sseli | 
							 |-  ( u e. ( K (,) L ) -> u e. ( K [,] L ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							adantl | 
							 |-  ( ( ph /\ u e. ( K (,) L ) ) -> u e. ( K [,] L ) )  | 
						
						
							| 28 | 
							
								24 27
							 | 
							sseldd | 
							 |-  ( ( ph /\ u e. ( K (,) L ) ) -> u e. RR )  | 
						
						
							| 29 | 
							
								27
							 | 
							iftrued | 
							 |-  ( ( ph /\ u e. ( K (,) L ) ) -> if ( u e. ( K [,] L ) , ( F ` u ) , if ( u < K , ( F ` K ) , ( F ` L ) ) ) = ( F ` u ) )  | 
						
						
							| 30 | 
							
								1
							 | 
							a1i | 
							 |-  ( ph -> F = ( u e. ( K [,] L ) |-> C ) )  | 
						
						
							| 31 | 
							
								
							 | 
							cncff | 
							 |-  ( F e. ( ( K [,] L ) -cn-> CC ) -> F : ( K [,] L ) --> CC )  | 
						
						
							| 32 | 
							
								8 31
							 | 
							syl | 
							 |-  ( ph -> F : ( K [,] L ) --> CC )  | 
						
						
							| 33 | 
							
								30 32
							 | 
							feq1dd | 
							 |-  ( ph -> ( u e. ( K [,] L ) |-> C ) : ( K [,] L ) --> CC )  | 
						
						
							| 34 | 
							
								33
							 | 
							fvmptelcdm | 
							 |-  ( ( ph /\ u e. ( K [,] L ) ) -> C e. CC )  | 
						
						
							| 35 | 
							
								27 34
							 | 
							syldan | 
							 |-  ( ( ph /\ u e. ( K (,) L ) ) -> C e. CC )  | 
						
						
							| 36 | 
							
								1
							 | 
							fvmpt2 | 
							 |-  ( ( u e. ( K [,] L ) /\ C e. CC ) -> ( F ` u ) = C )  | 
						
						
							| 37 | 
							
								27 35 36
							 | 
							syl2anc | 
							 |-  ( ( ph /\ u e. ( K (,) L ) ) -> ( F ` u ) = C )  | 
						
						
							| 38 | 
							
								37 35
							 | 
							eqeltrd | 
							 |-  ( ( ph /\ u e. ( K (,) L ) ) -> ( F ` u ) e. CC )  | 
						
						
							| 39 | 
							
								29 38
							 | 
							eqeltrd | 
							 |-  ( ( ph /\ u e. ( K (,) L ) ) -> if ( u e. ( K [,] L ) , ( F ` u ) , if ( u < K , ( F ` K ) , ( F ` L ) ) ) e. CC )  | 
						
						
							| 40 | 
							
								2
							 | 
							fvmpt2 | 
							 |-  ( ( u e. RR /\ if ( u e. ( K [,] L ) , ( F ` u ) , if ( u < K , ( F ` K ) , ( F ` L ) ) ) e. CC ) -> ( G ` u ) = if ( u e. ( K [,] L ) , ( F ` u ) , if ( u < K , ( F ` K ) , ( F ` L ) ) ) )  | 
						
						
							| 41 | 
							
								28 39 40
							 | 
							syl2anc | 
							 |-  ( ( ph /\ u e. ( K (,) L ) ) -> ( G ` u ) = if ( u e. ( K [,] L ) , ( F ` u ) , if ( u < K , ( F ` K ) , ( F ` L ) ) ) )  | 
						
						
							| 42 | 
							
								41 29 37
							 | 
							3eqtrd | 
							 |-  ( ( ph /\ u e. ( K (,) L ) ) -> ( G ` u ) = C )  | 
						
						
							| 43 | 
							
								11 42
							 | 
							ditgeq3d | 
							 |-  ( ph -> S_ [ K -> L ] ( G ` u ) _d u = S_ [ K -> L ] C _d u )  | 
						
						
							| 44 | 
							
								
							 | 
							mnfxr | 
							 |-  -oo e. RR*  | 
						
						
							| 45 | 
							
								44
							 | 
							a1i | 
							 |-  ( ph -> -oo e. RR* )  | 
						
						
							| 46 | 
							
								
							 | 
							pnfxr | 
							 |-  +oo e. RR*  | 
						
						
							| 47 | 
							
								46
							 | 
							a1i | 
							 |-  ( ph -> +oo e. RR* )  | 
						
						
							| 48 | 
							
								
							 | 
							ioomax | 
							 |-  ( -oo (,) +oo ) = RR  | 
						
						
							| 49 | 
							
								48
							 | 
							eqcomi | 
							 |-  RR = ( -oo (,) +oo )  | 
						
						
							| 50 | 
							
								49
							 | 
							a1i | 
							 |-  ( ph -> RR = ( -oo (,) +oo ) )  | 
						
						
							| 51 | 
							
								23 50
							 | 
							sseqtrd | 
							 |-  ( ph -> ( K [,] L ) C_ ( -oo (,) +oo ) )  | 
						
						
							| 52 | 
							
								
							 | 
							ax-resscn | 
							 |-  RR C_ CC  | 
						
						
							| 53 | 
							
								50 52
							 | 
							eqsstrrdi | 
							 |-  ( ph -> ( -oo (,) +oo ) C_ CC )  | 
						
						
							| 54 | 
							
								
							 | 
							cncfss | 
							 |-  ( ( ( K [,] L ) C_ ( -oo (,) +oo ) /\ ( -oo (,) +oo ) C_ CC ) -> ( ( X [,] Y ) -cn-> ( K [,] L ) ) C_ ( ( X [,] Y ) -cn-> ( -oo (,) +oo ) ) )  | 
						
						
							| 55 | 
							
								51 53 54
							 | 
							syl2anc | 
							 |-  ( ph -> ( ( X [,] Y ) -cn-> ( K [,] L ) ) C_ ( ( X [,] Y ) -cn-> ( -oo (,) +oo ) ) )  | 
						
						
							| 56 | 
							
								55 6
							 | 
							sseldd | 
							 |-  ( ph -> ( x e. ( X [,] Y ) |-> A ) e. ( ( X [,] Y ) -cn-> ( -oo (,) +oo ) ) )  | 
						
						
							| 57 | 
							
								
							 | 
							nfmpt1 | 
							 |-  F/_ u ( u e. ( K [,] L ) |-> C )  | 
						
						
							| 58 | 
							
								1 57
							 | 
							nfcxfr | 
							 |-  F/_ u F  | 
						
						
							| 59 | 
							
								
							 | 
							eqid | 
							 |-  ( topGen ` ran (,) ) = ( topGen ` ran (,) )  | 
						
						
							| 60 | 
							
								
							 | 
							eqid | 
							 |-  U. ( TopOpen ` CCfld ) = U. ( TopOpen ` CCfld )  | 
						
						
							| 61 | 
							
								
							 | 
							eqid | 
							 |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld )  | 
						
						
							| 62 | 
							
								61
							 | 
							cnfldtop | 
							 |-  ( TopOpen ` CCfld ) e. Top  | 
						
						
							| 63 | 
							
								62
							 | 
							a1i | 
							 |-  ( ph -> ( TopOpen ` CCfld ) e. Top )  | 
						
						
							| 64 | 
							
								23 52
							 | 
							sstrdi | 
							 |-  ( ph -> ( K [,] L ) C_ CC )  | 
						
						
							| 65 | 
							
								
							 | 
							ssid | 
							 |-  CC C_ CC  | 
						
						
							| 66 | 
							
								
							 | 
							eqid | 
							 |-  ( ( TopOpen ` CCfld ) |`t ( K [,] L ) ) = ( ( TopOpen ` CCfld ) |`t ( K [,] L ) )  | 
						
						
							| 67 | 
							
								
							 | 
							unicntop | 
							 |-  CC = U. ( TopOpen ` CCfld )  | 
						
						
							| 68 | 
							
								67
							 | 
							restid | 
							 |-  ( ( TopOpen ` CCfld ) e. Top -> ( ( TopOpen ` CCfld ) |`t CC ) = ( TopOpen ` CCfld ) )  | 
						
						
							| 69 | 
							
								62 68
							 | 
							ax-mp | 
							 |-  ( ( TopOpen ` CCfld ) |`t CC ) = ( TopOpen ` CCfld )  | 
						
						
							| 70 | 
							
								69
							 | 
							eqcomi | 
							 |-  ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC )  | 
						
						
							| 71 | 
							
								61 66 70
							 | 
							cncfcn | 
							 |-  ( ( ( K [,] L ) C_ CC /\ CC C_ CC ) -> ( ( K [,] L ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( K [,] L ) ) Cn ( TopOpen ` CCfld ) ) )  | 
						
						
							| 72 | 
							
								64 65 71
							 | 
							sylancl | 
							 |-  ( ph -> ( ( K [,] L ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( K [,] L ) ) Cn ( TopOpen ` CCfld ) ) )  | 
						
						
							| 73 | 
							
								
							 | 
							reex | 
							 |-  RR e. _V  | 
						
						
							| 74 | 
							
								73
							 | 
							a1i | 
							 |-  ( ph -> RR e. _V )  | 
						
						
							| 75 | 
							
								
							 | 
							restabs | 
							 |-  ( ( ( TopOpen ` CCfld ) e. Top /\ ( K [,] L ) C_ RR /\ RR e. _V ) -> ( ( ( TopOpen ` CCfld ) |`t RR ) |`t ( K [,] L ) ) = ( ( TopOpen ` CCfld ) |`t ( K [,] L ) ) )  | 
						
						
							| 76 | 
							
								63 23 74 75
							 | 
							syl3anc | 
							 |-  ( ph -> ( ( ( TopOpen ` CCfld ) |`t RR ) |`t ( K [,] L ) ) = ( ( TopOpen ` CCfld ) |`t ( K [,] L ) ) )  | 
						
						
							| 77 | 
							
								
							 | 
							tgioo4 | 
							 |-  ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR )  | 
						
						
							| 78 | 
							
								77
							 | 
							eqcomi | 
							 |-  ( ( TopOpen ` CCfld ) |`t RR ) = ( topGen ` ran (,) )  | 
						
						
							| 79 | 
							
								78
							 | 
							a1i | 
							 |-  ( ph -> ( ( TopOpen ` CCfld ) |`t RR ) = ( topGen ` ran (,) ) )  | 
						
						
							| 80 | 
							
								79
							 | 
							oveq1d | 
							 |-  ( ph -> ( ( ( TopOpen ` CCfld ) |`t RR ) |`t ( K [,] L ) ) = ( ( topGen ` ran (,) ) |`t ( K [,] L ) ) )  | 
						
						
							| 81 | 
							
								76 80
							 | 
							eqtr3d | 
							 |-  ( ph -> ( ( TopOpen ` CCfld ) |`t ( K [,] L ) ) = ( ( topGen ` ran (,) ) |`t ( K [,] L ) ) )  | 
						
						
							| 82 | 
							
								81
							 | 
							oveq1d | 
							 |-  ( ph -> ( ( ( TopOpen ` CCfld ) |`t ( K [,] L ) ) Cn ( TopOpen ` CCfld ) ) = ( ( ( topGen ` ran (,) ) |`t ( K [,] L ) ) Cn ( TopOpen ` CCfld ) ) )  | 
						
						
							| 83 | 
							
								72 82
							 | 
							eqtrd | 
							 |-  ( ph -> ( ( K [,] L ) -cn-> CC ) = ( ( ( topGen ` ran (,) ) |`t ( K [,] L ) ) Cn ( TopOpen ` CCfld ) ) )  | 
						
						
							| 84 | 
							
								8 83
							 | 
							eleqtrd | 
							 |-  ( ph -> F e. ( ( ( topGen ` ran (,) ) |`t ( K [,] L ) ) Cn ( TopOpen ` CCfld ) ) )  | 
						
						
							| 85 | 
							
								58 59 60 2 9 10 11 63 84
							 | 
							icccncfext | 
							 |-  ( ph -> ( G e. ( ( topGen ` ran (,) ) Cn ( ( TopOpen ` CCfld ) |`t ran F ) ) /\ ( G |` ( K [,] L ) ) = F ) )  | 
						
						
							| 86 | 
							
								85
							 | 
							simpld | 
							 |-  ( ph -> G e. ( ( topGen ` ran (,) ) Cn ( ( TopOpen ` CCfld ) |`t ran F ) ) )  | 
						
						
							| 87 | 
							
								
							 | 
							uniretop | 
							 |-  RR = U. ( topGen ` ran (,) )  | 
						
						
							| 88 | 
							
								
							 | 
							eqid | 
							 |-  U. ( ( TopOpen ` CCfld ) |`t ran F ) = U. ( ( TopOpen ` CCfld ) |`t ran F )  | 
						
						
							| 89 | 
							
								87 88
							 | 
							cnf | 
							 |-  ( G e. ( ( topGen ` ran (,) ) Cn ( ( TopOpen ` CCfld ) |`t ran F ) ) -> G : RR --> U. ( ( TopOpen ` CCfld ) |`t ran F ) )  | 
						
						
							| 90 | 
							
								86 89
							 | 
							syl | 
							 |-  ( ph -> G : RR --> U. ( ( TopOpen ` CCfld ) |`t ran F ) )  | 
						
						
							| 91 | 
							
								50
							 | 
							feq2d | 
							 |-  ( ph -> ( G : RR --> U. ( ( TopOpen ` CCfld ) |`t ran F ) <-> G : ( -oo (,) +oo ) --> U. ( ( TopOpen ` CCfld ) |`t ran F ) ) )  | 
						
						
							| 92 | 
							
								90 91
							 | 
							mpbid | 
							 |-  ( ph -> G : ( -oo (,) +oo ) --> U. ( ( TopOpen ` CCfld ) |`t ran F ) )  | 
						
						
							| 93 | 
							
								92
							 | 
							feqmptd | 
							 |-  ( ph -> G = ( w e. ( -oo (,) +oo ) |-> ( G ` w ) ) )  | 
						
						
							| 94 | 
							
								32
							 | 
							frnd | 
							 |-  ( ph -> ran F C_ CC )  | 
						
						
							| 95 | 
							
								
							 | 
							cncfss | 
							 |-  ( ( ran F C_ CC /\ CC C_ CC ) -> ( ( -oo (,) +oo ) -cn-> ran F ) C_ ( ( -oo (,) +oo ) -cn-> CC ) )  | 
						
						
							| 96 | 
							
								94 65 95
							 | 
							sylancl | 
							 |-  ( ph -> ( ( -oo (,) +oo ) -cn-> ran F ) C_ ( ( -oo (,) +oo ) -cn-> CC ) )  | 
						
						
							| 97 | 
							
								49
							 | 
							oveq2i | 
							 |-  ( ( TopOpen ` CCfld ) |`t RR ) = ( ( TopOpen ` CCfld ) |`t ( -oo (,) +oo ) )  | 
						
						
							| 98 | 
							
								77 97
							 | 
							eqtri | 
							 |-  ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t ( -oo (,) +oo ) )  | 
						
						
							| 99 | 
							
								
							 | 
							eqid | 
							 |-  ( ( TopOpen ` CCfld ) |`t ran F ) = ( ( TopOpen ` CCfld ) |`t ran F )  | 
						
						
							| 100 | 
							
								61 98 99
							 | 
							cncfcn | 
							 |-  ( ( ( -oo (,) +oo ) C_ CC /\ ran F C_ CC ) -> ( ( -oo (,) +oo ) -cn-> ran F ) = ( ( topGen ` ran (,) ) Cn ( ( TopOpen ` CCfld ) |`t ran F ) ) )  | 
						
						
							| 101 | 
							
								53 94 100
							 | 
							syl2anc | 
							 |-  ( ph -> ( ( -oo (,) +oo ) -cn-> ran F ) = ( ( topGen ` ran (,) ) Cn ( ( TopOpen ` CCfld ) |`t ran F ) ) )  | 
						
						
							| 102 | 
							
								101
							 | 
							eqcomd | 
							 |-  ( ph -> ( ( topGen ` ran (,) ) Cn ( ( TopOpen ` CCfld ) |`t ran F ) ) = ( ( -oo (,) +oo ) -cn-> ran F ) )  | 
						
						
							| 103 | 
							
								86 102
							 | 
							eleqtrd | 
							 |-  ( ph -> G e. ( ( -oo (,) +oo ) -cn-> ran F ) )  | 
						
						
							| 104 | 
							
								96 103
							 | 
							sseldd | 
							 |-  ( ph -> G e. ( ( -oo (,) +oo ) -cn-> CC ) )  | 
						
						
							| 105 | 
							
								93 104
							 | 
							eqeltrrd | 
							 |-  ( ph -> ( w e. ( -oo (,) +oo ) |-> ( G ` w ) ) e. ( ( -oo (,) +oo ) -cn-> CC ) )  | 
						
						
							| 106 | 
							
								
							 | 
							fveq2 | 
							 |-  ( w = A -> ( G ` w ) = ( G ` A ) )  | 
						
						
							| 107 | 
							
								3 4 5 45 47 56 7 105 12 106 14 15
							 | 
							itgsubst | 
							 |-  ( ph -> S_ [ K -> L ] ( G ` w ) _d w = S_ [ X -> Y ] ( ( G ` A ) x. B ) _d x )  | 
						
						
							| 108 | 
							
								22 43 107
							 | 
							3eqtr3a | 
							 |-  ( ph -> S_ [ K -> L ] C _d u = S_ [ X -> Y ] ( ( G ` A ) x. B ) _d x )  | 
						
						
							| 109 | 
							
								2
							 | 
							a1i | 
							 |-  ( ( ph /\ x e. ( X (,) Y ) ) -> G = ( u e. RR |-> if ( u e. ( K [,] L ) , ( F ` u ) , if ( u < K , ( F ` K ) , ( F ` L ) ) ) ) )  | 
						
						
							| 110 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( ph /\ x e. ( X (,) Y ) ) /\ u = A ) -> u = A )  | 
						
						
							| 111 | 
							
								61
							 | 
							cnfldtopon | 
							 |-  ( TopOpen ` CCfld ) e. ( TopOn ` CC )  | 
						
						
							| 112 | 
							
								3 4
							 | 
							iccssred | 
							 |-  ( ph -> ( X [,] Y ) C_ RR )  | 
						
						
							| 113 | 
							
								112 52
							 | 
							sstrdi | 
							 |-  ( ph -> ( X [,] Y ) C_ CC )  | 
						
						
							| 114 | 
							
								
							 | 
							resttopon | 
							 |-  ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ( X [,] Y ) C_ CC ) -> ( ( TopOpen ` CCfld ) |`t ( X [,] Y ) ) e. ( TopOn ` ( X [,] Y ) ) )  | 
						
						
							| 115 | 
							
								111 113 114
							 | 
							sylancr | 
							 |-  ( ph -> ( ( TopOpen ` CCfld ) |`t ( X [,] Y ) ) e. ( TopOn ` ( X [,] Y ) ) )  | 
						
						
							| 116 | 
							
								
							 | 
							resttopon | 
							 |-  ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ( K [,] L ) C_ CC ) -> ( ( TopOpen ` CCfld ) |`t ( K [,] L ) ) e. ( TopOn ` ( K [,] L ) ) )  | 
						
						
							| 117 | 
							
								111 64 116
							 | 
							sylancr | 
							 |-  ( ph -> ( ( TopOpen ` CCfld ) |`t ( K [,] L ) ) e. ( TopOn ` ( K [,] L ) ) )  | 
						
						
							| 118 | 
							
								
							 | 
							eqid | 
							 |-  ( ( TopOpen ` CCfld ) |`t ( X [,] Y ) ) = ( ( TopOpen ` CCfld ) |`t ( X [,] Y ) )  | 
						
						
							| 119 | 
							
								61 118 66
							 | 
							cncfcn | 
							 |-  ( ( ( X [,] Y ) C_ CC /\ ( K [,] L ) C_ CC ) -> ( ( X [,] Y ) -cn-> ( K [,] L ) ) = ( ( ( TopOpen ` CCfld ) |`t ( X [,] Y ) ) Cn ( ( TopOpen ` CCfld ) |`t ( K [,] L ) ) ) )  | 
						
						
							| 120 | 
							
								113 64 119
							 | 
							syl2anc | 
							 |-  ( ph -> ( ( X [,] Y ) -cn-> ( K [,] L ) ) = ( ( ( TopOpen ` CCfld ) |`t ( X [,] Y ) ) Cn ( ( TopOpen ` CCfld ) |`t ( K [,] L ) ) ) )  | 
						
						
							| 121 | 
							
								6 120
							 | 
							eleqtrd | 
							 |-  ( ph -> ( x e. ( X [,] Y ) |-> A ) e. ( ( ( TopOpen ` CCfld ) |`t ( X [,] Y ) ) Cn ( ( TopOpen ` CCfld ) |`t ( K [,] L ) ) ) )  | 
						
						
							| 122 | 
							
								
							 | 
							cnf2 | 
							 |-  ( ( ( ( TopOpen ` CCfld ) |`t ( X [,] Y ) ) e. ( TopOn ` ( X [,] Y ) ) /\ ( ( TopOpen ` CCfld ) |`t ( K [,] L ) ) e. ( TopOn ` ( K [,] L ) ) /\ ( x e. ( X [,] Y ) |-> A ) e. ( ( ( TopOpen ` CCfld ) |`t ( X [,] Y ) ) Cn ( ( TopOpen ` CCfld ) |`t ( K [,] L ) ) ) ) -> ( x e. ( X [,] Y ) |-> A ) : ( X [,] Y ) --> ( K [,] L ) )  | 
						
						
							| 123 | 
							
								115 117 121 122
							 | 
							syl3anc | 
							 |-  ( ph -> ( x e. ( X [,] Y ) |-> A ) : ( X [,] Y ) --> ( K [,] L ) )  | 
						
						
							| 124 | 
							
								123
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. ( X (,) Y ) ) -> ( x e. ( X [,] Y ) |-> A ) : ( X [,] Y ) --> ( K [,] L ) )  | 
						
						
							| 125 | 
							
								
							 | 
							eqid | 
							 |-  ( x e. ( X [,] Y ) |-> A ) = ( x e. ( X [,] Y ) |-> A )  | 
						
						
							| 126 | 
							
								125
							 | 
							fmpt | 
							 |-  ( A. x e. ( X [,] Y ) A e. ( K [,] L ) <-> ( x e. ( X [,] Y ) |-> A ) : ( X [,] Y ) --> ( K [,] L ) )  | 
						
						
							| 127 | 
							
								124 126
							 | 
							sylibr | 
							 |-  ( ( ph /\ x e. ( X (,) Y ) ) -> A. x e. ( X [,] Y ) A e. ( K [,] L ) )  | 
						
						
							| 128 | 
							
								
							 | 
							ioossicc | 
							 |-  ( X (,) Y ) C_ ( X [,] Y )  | 
						
						
							| 129 | 
							
								128
							 | 
							sseli | 
							 |-  ( x e. ( X (,) Y ) -> x e. ( X [,] Y ) )  | 
						
						
							| 130 | 
							
								129
							 | 
							adantl | 
							 |-  ( ( ph /\ x e. ( X (,) Y ) ) -> x e. ( X [,] Y ) )  | 
						
						
							| 131 | 
							
								
							 | 
							rsp | 
							 |-  ( A. x e. ( X [,] Y ) A e. ( K [,] L ) -> ( x e. ( X [,] Y ) -> A e. ( K [,] L ) ) )  | 
						
						
							| 132 | 
							
								127 130 131
							 | 
							sylc | 
							 |-  ( ( ph /\ x e. ( X (,) Y ) ) -> A e. ( K [,] L ) )  | 
						
						
							| 133 | 
							
								132
							 | 
							adantr | 
							 |-  ( ( ( ph /\ x e. ( X (,) Y ) ) /\ u = A ) -> A e. ( K [,] L ) )  | 
						
						
							| 134 | 
							
								110 133
							 | 
							eqeltrd | 
							 |-  ( ( ( ph /\ x e. ( X (,) Y ) ) /\ u = A ) -> u e. ( K [,] L ) )  | 
						
						
							| 135 | 
							
								134
							 | 
							iftrued | 
							 |-  ( ( ( ph /\ x e. ( X (,) Y ) ) /\ u = A ) -> if ( u e. ( K [,] L ) , ( F ` u ) , if ( u < K , ( F ` K ) , ( F ` L ) ) ) = ( F ` u ) )  | 
						
						
							| 136 | 
							
								
							 | 
							simpll | 
							 |-  ( ( ( ph /\ x e. ( X (,) Y ) ) /\ u = A ) -> ph )  | 
						
						
							| 137 | 
							
								136 134 34
							 | 
							syl2anc | 
							 |-  ( ( ( ph /\ x e. ( X (,) Y ) ) /\ u = A ) -> C e. CC )  | 
						
						
							| 138 | 
							
								134 137 36
							 | 
							syl2anc | 
							 |-  ( ( ( ph /\ x e. ( X (,) Y ) ) /\ u = A ) -> ( F ` u ) = C )  | 
						
						
							| 139 | 
							
								13
							 | 
							adantl | 
							 |-  ( ( ( ph /\ x e. ( X (,) Y ) ) /\ u = A ) -> C = E )  | 
						
						
							| 140 | 
							
								135 138 139
							 | 
							3eqtrd | 
							 |-  ( ( ( ph /\ x e. ( X (,) Y ) ) /\ u = A ) -> if ( u e. ( K [,] L ) , ( F ` u ) , if ( u < K , ( F ` K ) , ( F ` L ) ) ) = E )  | 
						
						
							| 141 | 
							
								23
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. ( X (,) Y ) ) -> ( K [,] L ) C_ RR )  | 
						
						
							| 142 | 
							
								141 132
							 | 
							sseldd | 
							 |-  ( ( ph /\ x e. ( X (,) Y ) ) -> A e. RR )  | 
						
						
							| 143 | 
							
								
							 | 
							elex | 
							 |-  ( A e. ( K [,] L ) -> A e. _V )  | 
						
						
							| 144 | 
							
								132 143
							 | 
							syl | 
							 |-  ( ( ph /\ x e. ( X (,) Y ) ) -> A e. _V )  | 
						
						
							| 145 | 
							
								
							 | 
							isset | 
							 |-  ( A e. _V <-> E. u u = A )  | 
						
						
							| 146 | 
							
								144 145
							 | 
							sylib | 
							 |-  ( ( ph /\ x e. ( X (,) Y ) ) -> E. u u = A )  | 
						
						
							| 147 | 
							
								139 137
							 | 
							eqeltrrd | 
							 |-  ( ( ( ph /\ x e. ( X (,) Y ) ) /\ u = A ) -> E e. CC )  | 
						
						
							| 148 | 
							
								146 147
							 | 
							exlimddv | 
							 |-  ( ( ph /\ x e. ( X (,) Y ) ) -> E e. CC )  | 
						
						
							| 149 | 
							
								109 140 142 148
							 | 
							fvmptd | 
							 |-  ( ( ph /\ x e. ( X (,) Y ) ) -> ( G ` A ) = E )  | 
						
						
							| 150 | 
							
								149
							 | 
							oveq1d | 
							 |-  ( ( ph /\ x e. ( X (,) Y ) ) -> ( ( G ` A ) x. B ) = ( E x. B ) )  | 
						
						
							| 151 | 
							
								5 150
							 | 
							ditgeq3d | 
							 |-  ( ph -> S_ [ X -> Y ] ( ( G ` A ) x. B ) _d x = S_ [ X -> Y ] ( E x. B ) _d x )  | 
						
						
							| 152 | 
							
								108 151
							 | 
							eqtrd | 
							 |-  ( ph -> S_ [ K -> L ] C _d u = S_ [ X -> Y ] ( E x. B ) _d x )  |