Step |
Hyp |
Ref |
Expression |
1 |
|
itgvallem3.1 |
|- ( ( ph /\ x e. A ) -> B = 0 ) |
2 |
1
|
adantrr |
|- ( ( ph /\ ( x e. A /\ 0 <_ B ) ) -> B = 0 ) |
3 |
2
|
ifeq1da |
|- ( ph -> if ( ( x e. A /\ 0 <_ B ) , B , 0 ) = if ( ( x e. A /\ 0 <_ B ) , 0 , 0 ) ) |
4 |
|
ifid |
|- if ( ( x e. A /\ 0 <_ B ) , 0 , 0 ) = 0 |
5 |
3 4
|
eqtrdi |
|- ( ph -> if ( ( x e. A /\ 0 <_ B ) , B , 0 ) = 0 ) |
6 |
5
|
mpteq2dv |
|- ( ph -> ( x e. RR |-> if ( ( x e. A /\ 0 <_ B ) , B , 0 ) ) = ( x e. RR |-> 0 ) ) |
7 |
|
fconstmpt |
|- ( RR X. { 0 } ) = ( x e. RR |-> 0 ) |
8 |
6 7
|
eqtr4di |
|- ( ph -> ( x e. RR |-> if ( ( x e. A /\ 0 <_ B ) , B , 0 ) ) = ( RR X. { 0 } ) ) |
9 |
8
|
fveq2d |
|- ( ph -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ B ) , B , 0 ) ) ) = ( S.2 ` ( RR X. { 0 } ) ) ) |
10 |
|
itg20 |
|- ( S.2 ` ( RR X. { 0 } ) ) = 0 |
11 |
9 10
|
eqtrdi |
|- ( ph -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ B ) , B , 0 ) ) ) = 0 ) |