Step |
Hyp |
Ref |
Expression |
1 |
|
itgvol0.1 |
|- ( ph -> A C_ RR ) |
2 |
|
itgvol0.2 |
|- ( ph -> ( vol* ` A ) = 0 ) |
3 |
|
itgvol0.3 |
|- ( ( ph /\ x e. A ) -> B e. CC ) |
4 |
|
mpt0 |
|- ( x e. (/) |-> B ) = (/) |
5 |
|
iblempty |
|- (/) e. L^1 |
6 |
4 5
|
eqeltri |
|- ( x e. (/) |-> B ) e. L^1 |
7 |
|
0ss |
|- (/) C_ A |
8 |
7
|
a1i |
|- ( ph -> (/) C_ A ) |
9 |
|
difssd |
|- ( ph -> ( A \ (/) ) C_ A ) |
10 |
|
ovolssnul |
|- ( ( ( A \ (/) ) C_ A /\ A C_ RR /\ ( vol* ` A ) = 0 ) -> ( vol* ` ( A \ (/) ) ) = 0 ) |
11 |
9 1 2 10
|
syl3anc |
|- ( ph -> ( vol* ` ( A \ (/) ) ) = 0 ) |
12 |
8 1 11 3
|
itgss3 |
|- ( ph -> ( ( ( x e. (/) |-> B ) e. L^1 <-> ( x e. A |-> B ) e. L^1 ) /\ S. (/) B _d x = S. A B _d x ) ) |
13 |
12
|
simpld |
|- ( ph -> ( ( x e. (/) |-> B ) e. L^1 <-> ( x e. A |-> B ) e. L^1 ) ) |
14 |
6 13
|
mpbii |
|- ( ph -> ( x e. A |-> B ) e. L^1 ) |
15 |
12
|
simprd |
|- ( ph -> S. (/) B _d x = S. A B _d x ) |
16 |
|
itg0 |
|- S. (/) B _d x = 0 |
17 |
15 16
|
eqtr3di |
|- ( ph -> S. A B _d x = 0 ) |
18 |
14 17
|
jca |
|- ( ph -> ( ( x e. A |-> B ) e. L^1 /\ S. A B _d x = 0 ) ) |