| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ( Re ` ( 0 / ( _i ^ k ) ) ) = ( Re ` ( 0 / ( _i ^ k ) ) ) | 
						
							| 2 | 1 | dfitg |  |-  S. A 0 _d x = sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( 0 / ( _i ^ k ) ) ) ) , ( Re ` ( 0 / ( _i ^ k ) ) ) , 0 ) ) ) ) | 
						
							| 3 |  | ax-icn |  |-  _i e. CC | 
						
							| 4 |  | elfznn0 |  |-  ( k e. ( 0 ... 3 ) -> k e. NN0 ) | 
						
							| 5 |  | expcl |  |-  ( ( _i e. CC /\ k e. NN0 ) -> ( _i ^ k ) e. CC ) | 
						
							| 6 | 3 4 5 | sylancr |  |-  ( k e. ( 0 ... 3 ) -> ( _i ^ k ) e. CC ) | 
						
							| 7 |  | ine0 |  |-  _i =/= 0 | 
						
							| 8 |  | elfzelz |  |-  ( k e. ( 0 ... 3 ) -> k e. ZZ ) | 
						
							| 9 |  | expne0i |  |-  ( ( _i e. CC /\ _i =/= 0 /\ k e. ZZ ) -> ( _i ^ k ) =/= 0 ) | 
						
							| 10 | 3 7 8 9 | mp3an12i |  |-  ( k e. ( 0 ... 3 ) -> ( _i ^ k ) =/= 0 ) | 
						
							| 11 | 6 10 | div0d |  |-  ( k e. ( 0 ... 3 ) -> ( 0 / ( _i ^ k ) ) = 0 ) | 
						
							| 12 | 11 | fveq2d |  |-  ( k e. ( 0 ... 3 ) -> ( Re ` ( 0 / ( _i ^ k ) ) ) = ( Re ` 0 ) ) | 
						
							| 13 |  | re0 |  |-  ( Re ` 0 ) = 0 | 
						
							| 14 | 12 13 | eqtrdi |  |-  ( k e. ( 0 ... 3 ) -> ( Re ` ( 0 / ( _i ^ k ) ) ) = 0 ) | 
						
							| 15 | 14 | ifeq1d |  |-  ( k e. ( 0 ... 3 ) -> if ( ( x e. A /\ 0 <_ ( Re ` ( 0 / ( _i ^ k ) ) ) ) , ( Re ` ( 0 / ( _i ^ k ) ) ) , 0 ) = if ( ( x e. A /\ 0 <_ ( Re ` ( 0 / ( _i ^ k ) ) ) ) , 0 , 0 ) ) | 
						
							| 16 |  | ifid |  |-  if ( ( x e. A /\ 0 <_ ( Re ` ( 0 / ( _i ^ k ) ) ) ) , 0 , 0 ) = 0 | 
						
							| 17 | 15 16 | eqtrdi |  |-  ( k e. ( 0 ... 3 ) -> if ( ( x e. A /\ 0 <_ ( Re ` ( 0 / ( _i ^ k ) ) ) ) , ( Re ` ( 0 / ( _i ^ k ) ) ) , 0 ) = 0 ) | 
						
							| 18 | 17 | mpteq2dv |  |-  ( k e. ( 0 ... 3 ) -> ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( 0 / ( _i ^ k ) ) ) ) , ( Re ` ( 0 / ( _i ^ k ) ) ) , 0 ) ) = ( x e. RR |-> 0 ) ) | 
						
							| 19 |  | fconstmpt |  |-  ( RR X. { 0 } ) = ( x e. RR |-> 0 ) | 
						
							| 20 | 18 19 | eqtr4di |  |-  ( k e. ( 0 ... 3 ) -> ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( 0 / ( _i ^ k ) ) ) ) , ( Re ` ( 0 / ( _i ^ k ) ) ) , 0 ) ) = ( RR X. { 0 } ) ) | 
						
							| 21 | 20 | fveq2d |  |-  ( k e. ( 0 ... 3 ) -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( 0 / ( _i ^ k ) ) ) ) , ( Re ` ( 0 / ( _i ^ k ) ) ) , 0 ) ) ) = ( S.2 ` ( RR X. { 0 } ) ) ) | 
						
							| 22 |  | itg20 |  |-  ( S.2 ` ( RR X. { 0 } ) ) = 0 | 
						
							| 23 | 21 22 | eqtrdi |  |-  ( k e. ( 0 ... 3 ) -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( 0 / ( _i ^ k ) ) ) ) , ( Re ` ( 0 / ( _i ^ k ) ) ) , 0 ) ) ) = 0 ) | 
						
							| 24 | 23 | oveq2d |  |-  ( k e. ( 0 ... 3 ) -> ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( 0 / ( _i ^ k ) ) ) ) , ( Re ` ( 0 / ( _i ^ k ) ) ) , 0 ) ) ) ) = ( ( _i ^ k ) x. 0 ) ) | 
						
							| 25 | 6 | mul01d |  |-  ( k e. ( 0 ... 3 ) -> ( ( _i ^ k ) x. 0 ) = 0 ) | 
						
							| 26 | 24 25 | eqtrd |  |-  ( k e. ( 0 ... 3 ) -> ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( 0 / ( _i ^ k ) ) ) ) , ( Re ` ( 0 / ( _i ^ k ) ) ) , 0 ) ) ) ) = 0 ) | 
						
							| 27 | 26 | sumeq2i |  |-  sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( 0 / ( _i ^ k ) ) ) ) , ( Re ` ( 0 / ( _i ^ k ) ) ) , 0 ) ) ) ) = sum_ k e. ( 0 ... 3 ) 0 | 
						
							| 28 |  | fzfi |  |-  ( 0 ... 3 ) e. Fin | 
						
							| 29 | 28 | olci |  |-  ( ( 0 ... 3 ) C_ ( ZZ>= ` 0 ) \/ ( 0 ... 3 ) e. Fin ) | 
						
							| 30 |  | sumz |  |-  ( ( ( 0 ... 3 ) C_ ( ZZ>= ` 0 ) \/ ( 0 ... 3 ) e. Fin ) -> sum_ k e. ( 0 ... 3 ) 0 = 0 ) | 
						
							| 31 | 29 30 | ax-mp |  |-  sum_ k e. ( 0 ... 3 ) 0 = 0 | 
						
							| 32 | 2 27 31 | 3eqtri |  |-  S. A 0 _d x = 0 |