| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itscnhlc0yqe.q |
|- Q = ( ( A ^ 2 ) + ( B ^ 2 ) ) |
| 2 |
|
itsclc0yqsol.d |
|- D = ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) ) |
| 3 |
|
animorr |
|- ( ( A = 0 /\ B =/= 0 ) -> ( A =/= 0 \/ B =/= 0 ) ) |
| 4 |
3
|
anim2i |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) -> ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) ) |
| 5 |
1 2
|
itsclc0yqsol |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) -> ( Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) |
| 6 |
4 5
|
syl3an1 |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) -> ( Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) |
| 7 |
6
|
imp |
|- ( ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) /\ ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) ) -> ( Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) |
| 8 |
|
oveq1 |
|- ( A = 0 -> ( A x. ( sqrt ` D ) ) = ( 0 x. ( sqrt ` D ) ) ) |
| 9 |
8
|
adantr |
|- ( ( A = 0 /\ B =/= 0 ) -> ( A x. ( sqrt ` D ) ) = ( 0 x. ( sqrt ` D ) ) ) |
| 10 |
9
|
adantl |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) -> ( A x. ( sqrt ` D ) ) = ( 0 x. ( sqrt ` D ) ) ) |
| 11 |
10
|
adantr |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( A x. ( sqrt ` D ) ) = ( 0 x. ( sqrt ` D ) ) ) |
| 12 |
|
rpcn |
|- ( R e. RR+ -> R e. CC ) |
| 13 |
12
|
adantr |
|- ( ( R e. RR+ /\ 0 <_ D ) -> R e. CC ) |
| 14 |
13
|
adantl |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> R e. CC ) |
| 15 |
14
|
sqcld |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( R ^ 2 ) e. CC ) |
| 16 |
1
|
resum2sqcl |
|- ( ( A e. RR /\ B e. RR ) -> Q e. RR ) |
| 17 |
16
|
recnd |
|- ( ( A e. RR /\ B e. RR ) -> Q e. CC ) |
| 18 |
17
|
3adant3 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> Q e. CC ) |
| 19 |
18
|
adantr |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) -> Q e. CC ) |
| 20 |
19
|
adantr |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> Q e. CC ) |
| 21 |
15 20
|
mulcld |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( R ^ 2 ) x. Q ) e. CC ) |
| 22 |
|
simpll3 |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> C e. RR ) |
| 23 |
22
|
recnd |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> C e. CC ) |
| 24 |
23
|
sqcld |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( C ^ 2 ) e. CC ) |
| 25 |
21 24
|
subcld |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) ) e. CC ) |
| 26 |
2 25
|
eqeltrid |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> D e. CC ) |
| 27 |
26
|
sqrtcld |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( sqrt ` D ) e. CC ) |
| 28 |
27
|
mul02d |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( 0 x. ( sqrt ` D ) ) = 0 ) |
| 29 |
11 28
|
eqtrd |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( A x. ( sqrt ` D ) ) = 0 ) |
| 30 |
29
|
oveq2d |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) = ( ( B x. C ) - 0 ) ) |
| 31 |
|
simpll2 |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> B e. RR ) |
| 32 |
31
|
recnd |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> B e. CC ) |
| 33 |
32 23
|
mulcld |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( B x. C ) e. CC ) |
| 34 |
33
|
subid1d |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B x. C ) - 0 ) = ( B x. C ) ) |
| 35 |
30 34
|
eqtrd |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) = ( B x. C ) ) |
| 36 |
|
sq0i |
|- ( A = 0 -> ( A ^ 2 ) = 0 ) |
| 37 |
36
|
adantr |
|- ( ( A = 0 /\ B =/= 0 ) -> ( A ^ 2 ) = 0 ) |
| 38 |
37
|
adantl |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) -> ( A ^ 2 ) = 0 ) |
| 39 |
38
|
adantr |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( A ^ 2 ) = 0 ) |
| 40 |
39
|
oveq1d |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( 0 + ( B ^ 2 ) ) ) |
| 41 |
32
|
sqcld |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( B ^ 2 ) e. CC ) |
| 42 |
41
|
addlidd |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( 0 + ( B ^ 2 ) ) = ( B ^ 2 ) ) |
| 43 |
40 42
|
eqtrd |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( B ^ 2 ) ) |
| 44 |
1 43
|
eqtrid |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> Q = ( B ^ 2 ) ) |
| 45 |
|
recn |
|- ( B e. RR -> B e. CC ) |
| 46 |
45
|
sqvald |
|- ( B e. RR -> ( B ^ 2 ) = ( B x. B ) ) |
| 47 |
46
|
3ad2ant2 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B ^ 2 ) = ( B x. B ) ) |
| 48 |
47
|
adantr |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) -> ( B ^ 2 ) = ( B x. B ) ) |
| 49 |
48
|
adantr |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( B ^ 2 ) = ( B x. B ) ) |
| 50 |
44 49
|
eqtrd |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> Q = ( B x. B ) ) |
| 51 |
35 50
|
oveq12d |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) = ( ( B x. C ) / ( B x. B ) ) ) |
| 52 |
|
simplrr |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> B =/= 0 ) |
| 53 |
23 32 32 52 52
|
divcan5d |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B x. C ) / ( B x. B ) ) = ( C / B ) ) |
| 54 |
51 53
|
eqtrd |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) = ( C / B ) ) |
| 55 |
54
|
eqeq2d |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) <-> Y = ( C / B ) ) ) |
| 56 |
55
|
biimpd |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) -> Y = ( C / B ) ) ) |
| 57 |
29
|
oveq2d |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) = ( ( B x. C ) + 0 ) ) |
| 58 |
33
|
addridd |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B x. C ) + 0 ) = ( B x. C ) ) |
| 59 |
57 58
|
eqtrd |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) = ( B x. C ) ) |
| 60 |
59 44
|
oveq12d |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) = ( ( B x. C ) / ( B ^ 2 ) ) ) |
| 61 |
|
simp2 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. RR ) |
| 62 |
61
|
recnd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. CC ) |
| 63 |
62
|
sqvald |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B ^ 2 ) = ( B x. B ) ) |
| 64 |
63
|
adantr |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) -> ( B ^ 2 ) = ( B x. B ) ) |
| 65 |
64
|
oveq2d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) -> ( ( B x. C ) / ( B ^ 2 ) ) = ( ( B x. C ) / ( B x. B ) ) ) |
| 66 |
|
simpl3 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) -> C e. RR ) |
| 67 |
66
|
recnd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) -> C e. CC ) |
| 68 |
62
|
adantr |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) -> B e. CC ) |
| 69 |
|
simpr |
|- ( ( A = 0 /\ B =/= 0 ) -> B =/= 0 ) |
| 70 |
69
|
adantl |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) -> B =/= 0 ) |
| 71 |
67 68 68 70 70
|
divcan5d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) -> ( ( B x. C ) / ( B x. B ) ) = ( C / B ) ) |
| 72 |
65 71
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) -> ( ( B x. C ) / ( B ^ 2 ) ) = ( C / B ) ) |
| 73 |
72
|
adantr |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B x. C ) / ( B ^ 2 ) ) = ( C / B ) ) |
| 74 |
60 73
|
eqtrd |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) = ( C / B ) ) |
| 75 |
74
|
eqeq2d |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) <-> Y = ( C / B ) ) ) |
| 76 |
75
|
biimpd |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) -> Y = ( C / B ) ) ) |
| 77 |
56 76
|
jaod |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) -> Y = ( C / B ) ) ) |
| 78 |
77
|
3adant3 |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) -> Y = ( C / B ) ) ) |
| 79 |
78
|
adantr |
|- ( ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) /\ ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) ) -> ( ( Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) -> Y = ( C / B ) ) ) |
| 80 |
|
oveq1 |
|- ( Y = ( C / B ) -> ( Y ^ 2 ) = ( ( C / B ) ^ 2 ) ) |
| 81 |
80
|
oveq2d |
|- ( Y = ( C / B ) -> ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( ( X ^ 2 ) + ( ( C / B ) ^ 2 ) ) ) |
| 82 |
81
|
eqeq1d |
|- ( Y = ( C / B ) -> ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) <-> ( ( X ^ 2 ) + ( ( C / B ) ^ 2 ) ) = ( R ^ 2 ) ) ) |
| 83 |
15
|
3adant3 |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( R ^ 2 ) e. CC ) |
| 84 |
23
|
3adant3 |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> C e. CC ) |
| 85 |
32
|
3adant3 |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> B e. CC ) |
| 86 |
|
simp1rr |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> B =/= 0 ) |
| 87 |
84 85 86
|
divcld |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( C / B ) e. CC ) |
| 88 |
87
|
sqcld |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( C / B ) ^ 2 ) e. CC ) |
| 89 |
|
simp3l |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> X e. RR ) |
| 90 |
89
|
recnd |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> X e. CC ) |
| 91 |
90
|
sqcld |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( X ^ 2 ) e. CC ) |
| 92 |
83 88 91
|
subadd2d |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( R ^ 2 ) - ( ( C / B ) ^ 2 ) ) = ( X ^ 2 ) <-> ( ( X ^ 2 ) + ( ( C / B ) ^ 2 ) ) = ( R ^ 2 ) ) ) |
| 93 |
23 32 52
|
sqdivd |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( C / B ) ^ 2 ) = ( ( C ^ 2 ) / ( B ^ 2 ) ) ) |
| 94 |
93
|
oveq2d |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( R ^ 2 ) - ( ( C / B ) ^ 2 ) ) = ( ( R ^ 2 ) - ( ( C ^ 2 ) / ( B ^ 2 ) ) ) ) |
| 95 |
31
|
resqcld |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( B ^ 2 ) e. RR ) |
| 96 |
31 52
|
sqgt0d |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> 0 < ( B ^ 2 ) ) |
| 97 |
95 96
|
elrpd |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( B ^ 2 ) e. RR+ ) |
| 98 |
97
|
rpcnne0d |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B ^ 2 ) e. CC /\ ( B ^ 2 ) =/= 0 ) ) |
| 99 |
|
subdivcomb1 |
|- ( ( ( R ^ 2 ) e. CC /\ ( C ^ 2 ) e. CC /\ ( ( B ^ 2 ) e. CC /\ ( B ^ 2 ) =/= 0 ) ) -> ( ( ( ( B ^ 2 ) x. ( R ^ 2 ) ) - ( C ^ 2 ) ) / ( B ^ 2 ) ) = ( ( R ^ 2 ) - ( ( C ^ 2 ) / ( B ^ 2 ) ) ) ) |
| 100 |
15 24 98 99
|
syl3anc |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( B ^ 2 ) x. ( R ^ 2 ) ) - ( C ^ 2 ) ) / ( B ^ 2 ) ) = ( ( R ^ 2 ) - ( ( C ^ 2 ) / ( B ^ 2 ) ) ) ) |
| 101 |
94 100
|
eqtr4d |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( R ^ 2 ) - ( ( C / B ) ^ 2 ) ) = ( ( ( ( B ^ 2 ) x. ( R ^ 2 ) ) - ( C ^ 2 ) ) / ( B ^ 2 ) ) ) |
| 102 |
101
|
eqeq1d |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( R ^ 2 ) - ( ( C / B ) ^ 2 ) ) = ( X ^ 2 ) <-> ( ( ( ( B ^ 2 ) x. ( R ^ 2 ) ) - ( C ^ 2 ) ) / ( B ^ 2 ) ) = ( X ^ 2 ) ) ) |
| 103 |
102
|
3adant3 |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( R ^ 2 ) - ( ( C / B ) ^ 2 ) ) = ( X ^ 2 ) <-> ( ( ( ( B ^ 2 ) x. ( R ^ 2 ) ) - ( C ^ 2 ) ) / ( B ^ 2 ) ) = ( X ^ 2 ) ) ) |
| 104 |
41
|
3adant3 |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( B ^ 2 ) e. CC ) |
| 105 |
104 83
|
mulcomd |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( B ^ 2 ) x. ( R ^ 2 ) ) = ( ( R ^ 2 ) x. ( B ^ 2 ) ) ) |
| 106 |
44
|
3adant3 |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> Q = ( B ^ 2 ) ) |
| 107 |
106
|
eqcomd |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( B ^ 2 ) = Q ) |
| 108 |
107
|
oveq2d |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( R ^ 2 ) x. ( B ^ 2 ) ) = ( ( R ^ 2 ) x. Q ) ) |
| 109 |
105 108
|
eqtrd |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( B ^ 2 ) x. ( R ^ 2 ) ) = ( ( R ^ 2 ) x. Q ) ) |
| 110 |
109
|
oveq1d |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( B ^ 2 ) x. ( R ^ 2 ) ) - ( C ^ 2 ) ) = ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) ) ) |
| 111 |
110
|
oveq1d |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( B ^ 2 ) x. ( R ^ 2 ) ) - ( C ^ 2 ) ) / ( B ^ 2 ) ) = ( ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) ) / ( B ^ 2 ) ) ) |
| 112 |
111
|
eqeq1d |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( ( B ^ 2 ) x. ( R ^ 2 ) ) - ( C ^ 2 ) ) / ( B ^ 2 ) ) = ( X ^ 2 ) <-> ( ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) ) / ( B ^ 2 ) ) = ( X ^ 2 ) ) ) |
| 113 |
2
|
oveq1i |
|- ( D / ( B ^ 2 ) ) = ( ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) ) / ( B ^ 2 ) ) |
| 114 |
113
|
eqeq1i |
|- ( ( D / ( B ^ 2 ) ) = ( X ^ 2 ) <-> ( ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) ) / ( B ^ 2 ) ) = ( X ^ 2 ) ) |
| 115 |
|
eqcom |
|- ( ( D / ( B ^ 2 ) ) = ( X ^ 2 ) <-> ( X ^ 2 ) = ( D / ( B ^ 2 ) ) ) |
| 116 |
26
|
3adant3 |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> D e. CC ) |
| 117 |
|
sqrtth |
|- ( D e. CC -> ( ( sqrt ` D ) ^ 2 ) = D ) |
| 118 |
117
|
eqcomd |
|- ( D e. CC -> D = ( ( sqrt ` D ) ^ 2 ) ) |
| 119 |
116 118
|
syl |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> D = ( ( sqrt ` D ) ^ 2 ) ) |
| 120 |
119
|
oveq1d |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( D / ( B ^ 2 ) ) = ( ( ( sqrt ` D ) ^ 2 ) / ( B ^ 2 ) ) ) |
| 121 |
27
|
3adant3 |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( sqrt ` D ) e. CC ) |
| 122 |
121 85 86
|
sqdivd |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( sqrt ` D ) / B ) ^ 2 ) = ( ( ( sqrt ` D ) ^ 2 ) / ( B ^ 2 ) ) ) |
| 123 |
120 122
|
eqtr4d |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( D / ( B ^ 2 ) ) = ( ( ( sqrt ` D ) / B ) ^ 2 ) ) |
| 124 |
123
|
eqeq2d |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( X ^ 2 ) = ( D / ( B ^ 2 ) ) <-> ( X ^ 2 ) = ( ( ( sqrt ` D ) / B ) ^ 2 ) ) ) |
| 125 |
121 85 86
|
divcld |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( sqrt ` D ) / B ) e. CC ) |
| 126 |
90 125
|
jca |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( X e. CC /\ ( ( sqrt ` D ) / B ) e. CC ) ) |
| 127 |
|
sqeqor |
|- ( ( X e. CC /\ ( ( sqrt ` D ) / B ) e. CC ) -> ( ( X ^ 2 ) = ( ( ( sqrt ` D ) / B ) ^ 2 ) <-> ( X = ( ( sqrt ` D ) / B ) \/ X = -u ( ( sqrt ` D ) / B ) ) ) ) |
| 128 |
126 127
|
syl |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( X ^ 2 ) = ( ( ( sqrt ` D ) / B ) ^ 2 ) <-> ( X = ( ( sqrt ` D ) / B ) \/ X = -u ( ( sqrt ` D ) / B ) ) ) ) |
| 129 |
|
orcom |
|- ( ( X = ( ( sqrt ` D ) / B ) \/ X = -u ( ( sqrt ` D ) / B ) ) <-> ( X = -u ( ( sqrt ` D ) / B ) \/ X = ( ( sqrt ` D ) / B ) ) ) |
| 130 |
129
|
a1i |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( X = ( ( sqrt ` D ) / B ) \/ X = -u ( ( sqrt ` D ) / B ) ) <-> ( X = -u ( ( sqrt ` D ) / B ) \/ X = ( ( sqrt ` D ) / B ) ) ) ) |
| 131 |
124 128 130
|
3bitrd |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( X ^ 2 ) = ( D / ( B ^ 2 ) ) <-> ( X = -u ( ( sqrt ` D ) / B ) \/ X = ( ( sqrt ` D ) / B ) ) ) ) |
| 132 |
131
|
biimpd |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( X ^ 2 ) = ( D / ( B ^ 2 ) ) -> ( X = -u ( ( sqrt ` D ) / B ) \/ X = ( ( sqrt ` D ) / B ) ) ) ) |
| 133 |
115 132
|
biimtrid |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( D / ( B ^ 2 ) ) = ( X ^ 2 ) -> ( X = -u ( ( sqrt ` D ) / B ) \/ X = ( ( sqrt ` D ) / B ) ) ) ) |
| 134 |
114 133
|
biimtrrid |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) ) / ( B ^ 2 ) ) = ( X ^ 2 ) -> ( X = -u ( ( sqrt ` D ) / B ) \/ X = ( ( sqrt ` D ) / B ) ) ) ) |
| 135 |
112 134
|
sylbid |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( ( B ^ 2 ) x. ( R ^ 2 ) ) - ( C ^ 2 ) ) / ( B ^ 2 ) ) = ( X ^ 2 ) -> ( X = -u ( ( sqrt ` D ) / B ) \/ X = ( ( sqrt ` D ) / B ) ) ) ) |
| 136 |
103 135
|
sylbid |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( R ^ 2 ) - ( ( C / B ) ^ 2 ) ) = ( X ^ 2 ) -> ( X = -u ( ( sqrt ` D ) / B ) \/ X = ( ( sqrt ` D ) / B ) ) ) ) |
| 137 |
92 136
|
sylbird |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( X ^ 2 ) + ( ( C / B ) ^ 2 ) ) = ( R ^ 2 ) -> ( X = -u ( ( sqrt ` D ) / B ) \/ X = ( ( sqrt ` D ) / B ) ) ) ) |
| 138 |
137
|
com12 |
|- ( ( ( X ^ 2 ) + ( ( C / B ) ^ 2 ) ) = ( R ^ 2 ) -> ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( X = -u ( ( sqrt ` D ) / B ) \/ X = ( ( sqrt ` D ) / B ) ) ) ) |
| 139 |
82 138
|
biimtrdi |
|- ( Y = ( C / B ) -> ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) -> ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( X = -u ( ( sqrt ` D ) / B ) \/ X = ( ( sqrt ` D ) / B ) ) ) ) ) |
| 140 |
139
|
com13 |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) -> ( Y = ( C / B ) -> ( X = -u ( ( sqrt ` D ) / B ) \/ X = ( ( sqrt ` D ) / B ) ) ) ) ) |
| 141 |
140
|
adantrd |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) -> ( Y = ( C / B ) -> ( X = -u ( ( sqrt ` D ) / B ) \/ X = ( ( sqrt ` D ) / B ) ) ) ) ) |
| 142 |
141
|
imp |
|- ( ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) /\ ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) ) -> ( Y = ( C / B ) -> ( X = -u ( ( sqrt ` D ) / B ) \/ X = ( ( sqrt ` D ) / B ) ) ) ) |
| 143 |
142
|
ancld |
|- ( ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) /\ ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) ) -> ( Y = ( C / B ) -> ( Y = ( C / B ) /\ ( X = -u ( ( sqrt ` D ) / B ) \/ X = ( ( sqrt ` D ) / B ) ) ) ) ) |
| 144 |
79 143
|
syld |
|- ( ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) /\ ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) ) -> ( ( Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) -> ( Y = ( C / B ) /\ ( X = -u ( ( sqrt ` D ) / B ) \/ X = ( ( sqrt ` D ) / B ) ) ) ) ) |
| 145 |
7 144
|
mpd |
|- ( ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) /\ ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) ) -> ( Y = ( C / B ) /\ ( X = -u ( ( sqrt ` D ) / B ) \/ X = ( ( sqrt ` D ) / B ) ) ) ) |
| 146 |
145
|
ex |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) -> ( Y = ( C / B ) /\ ( X = -u ( ( sqrt ` D ) / B ) \/ X = ( ( sqrt ` D ) / B ) ) ) ) ) |