| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itscnhlc0yqe.q |
|- Q = ( ( A ^ 2 ) + ( B ^ 2 ) ) |
| 2 |
|
itscnhlc0yqe.t |
|- T = -u ( 2 x. ( B x. C ) ) |
| 3 |
|
itscnhlc0yqe.u |
|- U = ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) |
| 4 |
|
oveq2 |
|- ( C = ( B x. Y ) -> ( B x. C ) = ( B x. ( B x. Y ) ) ) |
| 5 |
4
|
oveq2d |
|- ( C = ( B x. Y ) -> ( 2 x. ( B x. C ) ) = ( 2 x. ( B x. ( B x. Y ) ) ) ) |
| 6 |
5
|
oveq1d |
|- ( C = ( B x. Y ) -> ( ( 2 x. ( B x. C ) ) x. Y ) = ( ( 2 x. ( B x. ( B x. Y ) ) ) x. Y ) ) |
| 7 |
6
|
negeqd |
|- ( C = ( B x. Y ) -> -u ( ( 2 x. ( B x. C ) ) x. Y ) = -u ( ( 2 x. ( B x. ( B x. Y ) ) ) x. Y ) ) |
| 8 |
|
oveq1 |
|- ( C = ( B x. Y ) -> ( C ^ 2 ) = ( ( B x. Y ) ^ 2 ) ) |
| 9 |
7 8
|
oveq12d |
|- ( C = ( B x. Y ) -> ( -u ( ( 2 x. ( B x. C ) ) x. Y ) + ( C ^ 2 ) ) = ( -u ( ( 2 x. ( B x. ( B x. Y ) ) ) x. Y ) + ( ( B x. Y ) ^ 2 ) ) ) |
| 10 |
9
|
oveq2d |
|- ( C = ( B x. Y ) -> ( ( ( B x. Y ) ^ 2 ) + ( -u ( ( 2 x. ( B x. C ) ) x. Y ) + ( C ^ 2 ) ) ) = ( ( ( B x. Y ) ^ 2 ) + ( -u ( ( 2 x. ( B x. ( B x. Y ) ) ) x. Y ) + ( ( B x. Y ) ^ 2 ) ) ) ) |
| 11 |
10
|
eqcoms |
|- ( ( B x. Y ) = C -> ( ( ( B x. Y ) ^ 2 ) + ( -u ( ( 2 x. ( B x. C ) ) x. Y ) + ( C ^ 2 ) ) ) = ( ( ( B x. Y ) ^ 2 ) + ( -u ( ( 2 x. ( B x. ( B x. Y ) ) ) x. Y ) + ( ( B x. Y ) ^ 2 ) ) ) ) |
| 12 |
|
simp12 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> B e. RR ) |
| 13 |
12
|
recnd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> B e. CC ) |
| 14 |
|
simp3r |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> Y e. RR ) |
| 15 |
14
|
recnd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> Y e. CC ) |
| 16 |
13 15
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( B x. Y ) e. CC ) |
| 17 |
16
|
sqcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( B x. Y ) ^ 2 ) e. CC ) |
| 18 |
|
2cnd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> 2 e. CC ) |
| 19 |
13 16
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( B x. ( B x. Y ) ) e. CC ) |
| 20 |
18 19
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( 2 x. ( B x. ( B x. Y ) ) ) e. CC ) |
| 21 |
20 15
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( 2 x. ( B x. ( B x. Y ) ) ) x. Y ) e. CC ) |
| 22 |
21
|
negcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> -u ( ( 2 x. ( B x. ( B x. Y ) ) ) x. Y ) e. CC ) |
| 23 |
|
add32r |
|- ( ( ( ( B x. Y ) ^ 2 ) e. CC /\ -u ( ( 2 x. ( B x. ( B x. Y ) ) ) x. Y ) e. CC /\ ( ( B x. Y ) ^ 2 ) e. CC ) -> ( ( ( B x. Y ) ^ 2 ) + ( -u ( ( 2 x. ( B x. ( B x. Y ) ) ) x. Y ) + ( ( B x. Y ) ^ 2 ) ) ) = ( ( ( ( B x. Y ) ^ 2 ) + ( ( B x. Y ) ^ 2 ) ) + -u ( ( 2 x. ( B x. ( B x. Y ) ) ) x. Y ) ) ) |
| 24 |
17 22 17 23
|
syl3anc |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( B x. Y ) ^ 2 ) + ( -u ( ( 2 x. ( B x. ( B x. Y ) ) ) x. Y ) + ( ( B x. Y ) ^ 2 ) ) ) = ( ( ( ( B x. Y ) ^ 2 ) + ( ( B x. Y ) ^ 2 ) ) + -u ( ( 2 x. ( B x. ( B x. Y ) ) ) x. Y ) ) ) |
| 25 |
17 17
|
addcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( B x. Y ) ^ 2 ) + ( ( B x. Y ) ^ 2 ) ) e. CC ) |
| 26 |
25 21
|
negsubd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( B x. Y ) ^ 2 ) + ( ( B x. Y ) ^ 2 ) ) + -u ( ( 2 x. ( B x. ( B x. Y ) ) ) x. Y ) ) = ( ( ( ( B x. Y ) ^ 2 ) + ( ( B x. Y ) ^ 2 ) ) - ( ( 2 x. ( B x. ( B x. Y ) ) ) x. Y ) ) ) |
| 27 |
18 19 15
|
mulassd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( 2 x. ( B x. ( B x. Y ) ) ) x. Y ) = ( 2 x. ( ( B x. ( B x. Y ) ) x. Y ) ) ) |
| 28 |
13 16 15
|
mul32d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( B x. ( B x. Y ) ) x. Y ) = ( ( B x. Y ) x. ( B x. Y ) ) ) |
| 29 |
16
|
sqvald |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( B x. Y ) ^ 2 ) = ( ( B x. Y ) x. ( B x. Y ) ) ) |
| 30 |
28 29
|
eqtr4d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( B x. ( B x. Y ) ) x. Y ) = ( ( B x. Y ) ^ 2 ) ) |
| 31 |
30
|
oveq2d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( 2 x. ( ( B x. ( B x. Y ) ) x. Y ) ) = ( 2 x. ( ( B x. Y ) ^ 2 ) ) ) |
| 32 |
17
|
2timesd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( 2 x. ( ( B x. Y ) ^ 2 ) ) = ( ( ( B x. Y ) ^ 2 ) + ( ( B x. Y ) ^ 2 ) ) ) |
| 33 |
27 31 32
|
3eqtrrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( B x. Y ) ^ 2 ) + ( ( B x. Y ) ^ 2 ) ) = ( ( 2 x. ( B x. ( B x. Y ) ) ) x. Y ) ) |
| 34 |
25 33
|
subeq0bd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( B x. Y ) ^ 2 ) + ( ( B x. Y ) ^ 2 ) ) - ( ( 2 x. ( B x. ( B x. Y ) ) ) x. Y ) ) = 0 ) |
| 35 |
26 34
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( B x. Y ) ^ 2 ) + ( ( B x. Y ) ^ 2 ) ) + -u ( ( 2 x. ( B x. ( B x. Y ) ) ) x. Y ) ) = 0 ) |
| 36 |
24 35
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( B x. Y ) ^ 2 ) + ( -u ( ( 2 x. ( B x. ( B x. Y ) ) ) x. Y ) + ( ( B x. Y ) ^ 2 ) ) ) = 0 ) |
| 37 |
11 36
|
sylan9eqr |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) /\ ( B x. Y ) = C ) -> ( ( ( B x. Y ) ^ 2 ) + ( -u ( ( 2 x. ( B x. C ) ) x. Y ) + ( C ^ 2 ) ) ) = 0 ) |
| 38 |
37
|
ex |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( B x. Y ) = C -> ( ( ( B x. Y ) ^ 2 ) + ( -u ( ( 2 x. ( B x. C ) ) x. Y ) + ( C ^ 2 ) ) ) = 0 ) ) |
| 39 |
|
simp3l |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> X e. RR ) |
| 40 |
39
|
recnd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> X e. CC ) |
| 41 |
40
|
mul02d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( 0 x. X ) = 0 ) |
| 42 |
41
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( 0 x. X ) + ( B x. Y ) ) = ( 0 + ( B x. Y ) ) ) |
| 43 |
16
|
addlidd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( 0 + ( B x. Y ) ) = ( B x. Y ) ) |
| 44 |
42 43
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( 0 x. X ) + ( B x. Y ) ) = ( B x. Y ) ) |
| 45 |
44
|
eqeq1d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( 0 x. X ) + ( B x. Y ) ) = C <-> ( B x. Y ) = C ) ) |
| 46 |
13
|
sqcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( B ^ 2 ) e. CC ) |
| 47 |
46
|
addlidd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( 0 + ( B ^ 2 ) ) = ( B ^ 2 ) ) |
| 48 |
47
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( 0 + ( B ^ 2 ) ) x. ( Y ^ 2 ) ) = ( ( B ^ 2 ) x. ( Y ^ 2 ) ) ) |
| 49 |
13 15
|
sqmuld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( B x. Y ) ^ 2 ) = ( ( B ^ 2 ) x. ( Y ^ 2 ) ) ) |
| 50 |
48 49
|
eqtr4d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( 0 + ( B ^ 2 ) ) x. ( Y ^ 2 ) ) = ( ( B x. Y ) ^ 2 ) ) |
| 51 |
|
simp13 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> C e. RR ) |
| 52 |
51
|
recnd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> C e. CC ) |
| 53 |
13 52
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( B x. C ) e. CC ) |
| 54 |
18 53
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( 2 x. ( B x. C ) ) e. CC ) |
| 55 |
54 15
|
mulneg1d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( -u ( 2 x. ( B x. C ) ) x. Y ) = -u ( ( 2 x. ( B x. C ) ) x. Y ) ) |
| 56 |
|
rpcn |
|- ( R e. RR+ -> R e. CC ) |
| 57 |
56
|
sqcld |
|- ( R e. RR+ -> ( R ^ 2 ) e. CC ) |
| 58 |
57
|
mul02d |
|- ( R e. RR+ -> ( 0 x. ( R ^ 2 ) ) = 0 ) |
| 59 |
58
|
oveq2d |
|- ( R e. RR+ -> ( ( C ^ 2 ) - ( 0 x. ( R ^ 2 ) ) ) = ( ( C ^ 2 ) - 0 ) ) |
| 60 |
59
|
3ad2ant2 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( C ^ 2 ) - ( 0 x. ( R ^ 2 ) ) ) = ( ( C ^ 2 ) - 0 ) ) |
| 61 |
52
|
sqcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( C ^ 2 ) e. CC ) |
| 62 |
61
|
subid1d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( C ^ 2 ) - 0 ) = ( C ^ 2 ) ) |
| 63 |
60 62
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( C ^ 2 ) - ( 0 x. ( R ^ 2 ) ) ) = ( C ^ 2 ) ) |
| 64 |
55 63
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( -u ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( 0 x. ( R ^ 2 ) ) ) ) = ( -u ( ( 2 x. ( B x. C ) ) x. Y ) + ( C ^ 2 ) ) ) |
| 65 |
50 64
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( 0 + ( B ^ 2 ) ) x. ( Y ^ 2 ) ) + ( ( -u ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( 0 x. ( R ^ 2 ) ) ) ) ) = ( ( ( B x. Y ) ^ 2 ) + ( -u ( ( 2 x. ( B x. C ) ) x. Y ) + ( C ^ 2 ) ) ) ) |
| 66 |
65
|
eqeq1d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( 0 + ( B ^ 2 ) ) x. ( Y ^ 2 ) ) + ( ( -u ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( 0 x. ( R ^ 2 ) ) ) ) ) = 0 <-> ( ( ( B x. Y ) ^ 2 ) + ( -u ( ( 2 x. ( B x. C ) ) x. Y ) + ( C ^ 2 ) ) ) = 0 ) ) |
| 67 |
38 45 66
|
3imtr4d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( 0 x. X ) + ( B x. Y ) ) = C -> ( ( ( 0 + ( B ^ 2 ) ) x. ( Y ^ 2 ) ) + ( ( -u ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( 0 x. ( R ^ 2 ) ) ) ) ) = 0 ) ) |
| 68 |
67
|
3exp |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( R e. RR+ -> ( ( X e. RR /\ Y e. RR ) -> ( ( ( 0 x. X ) + ( B x. Y ) ) = C -> ( ( ( 0 + ( B ^ 2 ) ) x. ( Y ^ 2 ) ) + ( ( -u ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( 0 x. ( R ^ 2 ) ) ) ) ) = 0 ) ) ) ) |
| 69 |
68
|
3adant1r |
|- ( ( ( A e. RR /\ A = 0 ) /\ B e. RR /\ C e. RR ) -> ( R e. RR+ -> ( ( X e. RR /\ Y e. RR ) -> ( ( ( 0 x. X ) + ( B x. Y ) ) = C -> ( ( ( 0 + ( B ^ 2 ) ) x. ( Y ^ 2 ) ) + ( ( -u ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( 0 x. ( R ^ 2 ) ) ) ) ) = 0 ) ) ) ) |
| 70 |
69
|
3imp |
|- ( ( ( ( A e. RR /\ A = 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( 0 x. X ) + ( B x. Y ) ) = C -> ( ( ( 0 + ( B ^ 2 ) ) x. ( Y ^ 2 ) ) + ( ( -u ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( 0 x. ( R ^ 2 ) ) ) ) ) = 0 ) ) |
| 71 |
70
|
adantld |
|- ( ( ( ( A e. RR /\ A = 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( 0 x. X ) + ( B x. Y ) ) = C ) -> ( ( ( 0 + ( B ^ 2 ) ) x. ( Y ^ 2 ) ) + ( ( -u ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( 0 x. ( R ^ 2 ) ) ) ) ) = 0 ) ) |
| 72 |
|
oveq1 |
|- ( A = 0 -> ( A x. X ) = ( 0 x. X ) ) |
| 73 |
72
|
oveq1d |
|- ( A = 0 -> ( ( A x. X ) + ( B x. Y ) ) = ( ( 0 x. X ) + ( B x. Y ) ) ) |
| 74 |
73
|
eqeq1d |
|- ( A = 0 -> ( ( ( A x. X ) + ( B x. Y ) ) = C <-> ( ( 0 x. X ) + ( B x. Y ) ) = C ) ) |
| 75 |
74
|
anbi2d |
|- ( A = 0 -> ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) <-> ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( 0 x. X ) + ( B x. Y ) ) = C ) ) ) |
| 76 |
|
sq0i |
|- ( A = 0 -> ( A ^ 2 ) = 0 ) |
| 77 |
76
|
oveq1d |
|- ( A = 0 -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( 0 + ( B ^ 2 ) ) ) |
| 78 |
1 77
|
eqtrid |
|- ( A = 0 -> Q = ( 0 + ( B ^ 2 ) ) ) |
| 79 |
78
|
oveq1d |
|- ( A = 0 -> ( Q x. ( Y ^ 2 ) ) = ( ( 0 + ( B ^ 2 ) ) x. ( Y ^ 2 ) ) ) |
| 80 |
2
|
oveq1i |
|- ( T x. Y ) = ( -u ( 2 x. ( B x. C ) ) x. Y ) |
| 81 |
80
|
a1i |
|- ( A = 0 -> ( T x. Y ) = ( -u ( 2 x. ( B x. C ) ) x. Y ) ) |
| 82 |
76
|
oveq1d |
|- ( A = 0 -> ( ( A ^ 2 ) x. ( R ^ 2 ) ) = ( 0 x. ( R ^ 2 ) ) ) |
| 83 |
82
|
oveq2d |
|- ( A = 0 -> ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) = ( ( C ^ 2 ) - ( 0 x. ( R ^ 2 ) ) ) ) |
| 84 |
3 83
|
eqtrid |
|- ( A = 0 -> U = ( ( C ^ 2 ) - ( 0 x. ( R ^ 2 ) ) ) ) |
| 85 |
81 84
|
oveq12d |
|- ( A = 0 -> ( ( T x. Y ) + U ) = ( ( -u ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( 0 x. ( R ^ 2 ) ) ) ) ) |
| 86 |
79 85
|
oveq12d |
|- ( A = 0 -> ( ( Q x. ( Y ^ 2 ) ) + ( ( T x. Y ) + U ) ) = ( ( ( 0 + ( B ^ 2 ) ) x. ( Y ^ 2 ) ) + ( ( -u ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( 0 x. ( R ^ 2 ) ) ) ) ) ) |
| 87 |
86
|
eqeq1d |
|- ( A = 0 -> ( ( ( Q x. ( Y ^ 2 ) ) + ( ( T x. Y ) + U ) ) = 0 <-> ( ( ( 0 + ( B ^ 2 ) ) x. ( Y ^ 2 ) ) + ( ( -u ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( 0 x. ( R ^ 2 ) ) ) ) ) = 0 ) ) |
| 88 |
75 87
|
imbi12d |
|- ( A = 0 -> ( ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) -> ( ( Q x. ( Y ^ 2 ) ) + ( ( T x. Y ) + U ) ) = 0 ) <-> ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( 0 x. X ) + ( B x. Y ) ) = C ) -> ( ( ( 0 + ( B ^ 2 ) ) x. ( Y ^ 2 ) ) + ( ( -u ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( 0 x. ( R ^ 2 ) ) ) ) ) = 0 ) ) ) |
| 89 |
88
|
adantl |
|- ( ( A e. RR /\ A = 0 ) -> ( ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) -> ( ( Q x. ( Y ^ 2 ) ) + ( ( T x. Y ) + U ) ) = 0 ) <-> ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( 0 x. X ) + ( B x. Y ) ) = C ) -> ( ( ( 0 + ( B ^ 2 ) ) x. ( Y ^ 2 ) ) + ( ( -u ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( 0 x. ( R ^ 2 ) ) ) ) ) = 0 ) ) ) |
| 90 |
89
|
3ad2ant1 |
|- ( ( ( A e. RR /\ A = 0 ) /\ B e. RR /\ C e. RR ) -> ( ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) -> ( ( Q x. ( Y ^ 2 ) ) + ( ( T x. Y ) + U ) ) = 0 ) <-> ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( 0 x. X ) + ( B x. Y ) ) = C ) -> ( ( ( 0 + ( B ^ 2 ) ) x. ( Y ^ 2 ) ) + ( ( -u ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( 0 x. ( R ^ 2 ) ) ) ) ) = 0 ) ) ) |
| 91 |
90
|
3ad2ant1 |
|- ( ( ( ( A e. RR /\ A = 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) -> ( ( Q x. ( Y ^ 2 ) ) + ( ( T x. Y ) + U ) ) = 0 ) <-> ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( 0 x. X ) + ( B x. Y ) ) = C ) -> ( ( ( 0 + ( B ^ 2 ) ) x. ( Y ^ 2 ) ) + ( ( -u ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( 0 x. ( R ^ 2 ) ) ) ) ) = 0 ) ) ) |
| 92 |
71 91
|
mpbird |
|- ( ( ( ( A e. RR /\ A = 0 ) /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) -> ( ( Q x. ( Y ^ 2 ) ) + ( ( T x. Y ) + U ) ) = 0 ) ) |