| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							remulcl | 
							 |-  ( ( S e. RR /\ U e. RR ) -> ( S x. U ) e. RR )  | 
						
						
							| 2 | 
							
								1
							 | 
							3adant2 | 
							 |-  ( ( S e. RR /\ T e. RR /\ U e. RR ) -> ( S x. U ) e. RR )  | 
						
						
							| 3 | 
							
								2
							 | 
							adantr | 
							 |-  ( ( ( S e. RR /\ T e. RR /\ U e. RR ) /\ ( V e. RR /\ 0 <_ V ) ) -> ( S x. U ) e. RR )  | 
						
						
							| 4 | 
							
								
							 | 
							simpl2 | 
							 |-  ( ( ( S e. RR /\ T e. RR /\ U e. RR ) /\ ( V e. RR /\ 0 <_ V ) ) -> T e. RR )  | 
						
						
							| 5 | 
							
								
							 | 
							resqrtcl | 
							 |-  ( ( V e. RR /\ 0 <_ V ) -> ( sqrt ` V ) e. RR )  | 
						
						
							| 6 | 
							
								5
							 | 
							adantl | 
							 |-  ( ( ( S e. RR /\ T e. RR /\ U e. RR ) /\ ( V e. RR /\ 0 <_ V ) ) -> ( sqrt ` V ) e. RR )  | 
						
						
							| 7 | 
							
								4 6
							 | 
							remulcld | 
							 |-  ( ( ( S e. RR /\ T e. RR /\ U e. RR ) /\ ( V e. RR /\ 0 <_ V ) ) -> ( T x. ( sqrt ` V ) ) e. RR )  | 
						
						
							| 8 | 
							
								3 7
							 | 
							readdcld | 
							 |-  ( ( ( S e. RR /\ T e. RR /\ U e. RR ) /\ ( V e. RR /\ 0 <_ V ) ) -> ( ( S x. U ) + ( T x. ( sqrt ` V ) ) ) e. RR )  | 
						
						
							| 9 | 
							
								8
							 | 
							3adant3 | 
							 |-  ( ( ( S e. RR /\ T e. RR /\ U e. RR ) /\ ( V e. RR /\ 0 <_ V ) /\ ( W e. RR /\ W =/= 0 ) ) -> ( ( S x. U ) + ( T x. ( sqrt ` V ) ) ) e. RR )  | 
						
						
							| 10 | 
							
								
							 | 
							simp3l | 
							 |-  ( ( ( S e. RR /\ T e. RR /\ U e. RR ) /\ ( V e. RR /\ 0 <_ V ) /\ ( W e. RR /\ W =/= 0 ) ) -> W e. RR )  | 
						
						
							| 11 | 
							
								
							 | 
							simp3r | 
							 |-  ( ( ( S e. RR /\ T e. RR /\ U e. RR ) /\ ( V e. RR /\ 0 <_ V ) /\ ( W e. RR /\ W =/= 0 ) ) -> W =/= 0 )  | 
						
						
							| 12 | 
							
								9 10 11
							 | 
							redivcld | 
							 |-  ( ( ( S e. RR /\ T e. RR /\ U e. RR ) /\ ( V e. RR /\ 0 <_ V ) /\ ( W e. RR /\ W =/= 0 ) ) -> ( ( ( S x. U ) + ( T x. ( sqrt ` V ) ) ) / W ) e. RR )  |