Step |
Hyp |
Ref |
Expression |
1 |
|
remulcl |
|- ( ( S e. RR /\ U e. RR ) -> ( S x. U ) e. RR ) |
2 |
1
|
3adant2 |
|- ( ( S e. RR /\ T e. RR /\ U e. RR ) -> ( S x. U ) e. RR ) |
3 |
2
|
adantr |
|- ( ( ( S e. RR /\ T e. RR /\ U e. RR ) /\ ( V e. RR /\ 0 <_ V ) ) -> ( S x. U ) e. RR ) |
4 |
|
simpl2 |
|- ( ( ( S e. RR /\ T e. RR /\ U e. RR ) /\ ( V e. RR /\ 0 <_ V ) ) -> T e. RR ) |
5 |
|
resqrtcl |
|- ( ( V e. RR /\ 0 <_ V ) -> ( sqrt ` V ) e. RR ) |
6 |
5
|
adantl |
|- ( ( ( S e. RR /\ T e. RR /\ U e. RR ) /\ ( V e. RR /\ 0 <_ V ) ) -> ( sqrt ` V ) e. RR ) |
7 |
4 6
|
remulcld |
|- ( ( ( S e. RR /\ T e. RR /\ U e. RR ) /\ ( V e. RR /\ 0 <_ V ) ) -> ( T x. ( sqrt ` V ) ) e. RR ) |
8 |
3 7
|
readdcld |
|- ( ( ( S e. RR /\ T e. RR /\ U e. RR ) /\ ( V e. RR /\ 0 <_ V ) ) -> ( ( S x. U ) + ( T x. ( sqrt ` V ) ) ) e. RR ) |
9 |
8
|
3adant3 |
|- ( ( ( S e. RR /\ T e. RR /\ U e. RR ) /\ ( V e. RR /\ 0 <_ V ) /\ ( W e. RR /\ W =/= 0 ) ) -> ( ( S x. U ) + ( T x. ( sqrt ` V ) ) ) e. RR ) |
10 |
|
simp3l |
|- ( ( ( S e. RR /\ T e. RR /\ U e. RR ) /\ ( V e. RR /\ 0 <_ V ) /\ ( W e. RR /\ W =/= 0 ) ) -> W e. RR ) |
11 |
|
simp3r |
|- ( ( ( S e. RR /\ T e. RR /\ U e. RR ) /\ ( V e. RR /\ 0 <_ V ) /\ ( W e. RR /\ W =/= 0 ) ) -> W =/= 0 ) |
12 |
9 10 11
|
redivcld |
|- ( ( ( S e. RR /\ T e. RR /\ U e. RR ) /\ ( V e. RR /\ 0 <_ V ) /\ ( W e. RR /\ W =/= 0 ) ) -> ( ( ( S x. U ) + ( T x. ( sqrt ` V ) ) ) / W ) e. RR ) |