| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itsclc0lem3.q |
|- Q = ( ( A ^ 2 ) + ( B ^ 2 ) ) |
| 2 |
|
itsclc0lem3.d |
|- D = ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) ) |
| 3 |
|
simpr |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR ) -> R e. RR ) |
| 4 |
3
|
resqcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR ) -> ( R ^ 2 ) e. RR ) |
| 5 |
1
|
resum2sqcl |
|- ( ( A e. RR /\ B e. RR ) -> Q e. RR ) |
| 6 |
5
|
3adant3 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> Q e. RR ) |
| 7 |
6
|
adantr |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR ) -> Q e. RR ) |
| 8 |
4 7
|
remulcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR ) -> ( ( R ^ 2 ) x. Q ) e. RR ) |
| 9 |
|
simpl3 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR ) -> C e. RR ) |
| 10 |
9
|
resqcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR ) -> ( C ^ 2 ) e. RR ) |
| 11 |
8 10
|
resubcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR ) -> ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) ) e. RR ) |
| 12 |
2 11
|
eqeltrid |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR ) -> D e. RR ) |