| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itscnhlc0yqe.q |
|- Q = ( ( A ^ 2 ) + ( B ^ 2 ) ) |
| 2 |
|
itsclc0yqsol.d |
|- D = ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) ) |
| 3 |
|
eqid |
|- -u ( 2 x. ( B x. C ) ) = -u ( 2 x. ( B x. C ) ) |
| 4 |
|
eqid |
|- ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) = ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) |
| 5 |
1 3 4
|
itsclc0yqe |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) -> ( ( Q x. ( Y ^ 2 ) ) + ( ( -u ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) = 0 ) ) |
| 6 |
5
|
3adant1r |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) -> ( ( Q x. ( Y ^ 2 ) ) + ( ( -u ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) = 0 ) ) |
| 7 |
6
|
3adant2r |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) -> ( ( Q x. ( Y ^ 2 ) ) + ( ( -u ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) = 0 ) ) |
| 8 |
|
3simpa |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A e. RR /\ B e. RR ) ) |
| 9 |
8
|
adantr |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) -> ( A e. RR /\ B e. RR ) ) |
| 10 |
1
|
resum2sqcl |
|- ( ( A e. RR /\ B e. RR ) -> Q e. RR ) |
| 11 |
9 10
|
syl |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) -> Q e. RR ) |
| 12 |
11
|
3ad2ant1 |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> Q e. RR ) |
| 13 |
12
|
recnd |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> Q e. CC ) |
| 14 |
|
simpr1 |
|- ( ( A =/= 0 /\ ( A e. RR /\ B e. RR /\ C e. RR ) ) -> A e. RR ) |
| 15 |
|
simpl |
|- ( ( A =/= 0 /\ ( A e. RR /\ B e. RR /\ C e. RR ) ) -> A =/= 0 ) |
| 16 |
|
simpr2 |
|- ( ( A =/= 0 /\ ( A e. RR /\ B e. RR /\ C e. RR ) ) -> B e. RR ) |
| 17 |
1
|
resum2sqgt0 |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR ) -> 0 < Q ) |
| 18 |
14 15 16 17
|
syl21anc |
|- ( ( A =/= 0 /\ ( A e. RR /\ B e. RR /\ C e. RR ) ) -> 0 < Q ) |
| 19 |
18
|
ex |
|- ( A =/= 0 -> ( ( A e. RR /\ B e. RR /\ C e. RR ) -> 0 < Q ) ) |
| 20 |
|
simpr2 |
|- ( ( B =/= 0 /\ ( A e. RR /\ B e. RR /\ C e. RR ) ) -> B e. RR ) |
| 21 |
|
simpl |
|- ( ( B =/= 0 /\ ( A e. RR /\ B e. RR /\ C e. RR ) ) -> B =/= 0 ) |
| 22 |
|
simpr1 |
|- ( ( B =/= 0 /\ ( A e. RR /\ B e. RR /\ C e. RR ) ) -> A e. RR ) |
| 23 |
|
eqid |
|- ( ( B ^ 2 ) + ( A ^ 2 ) ) = ( ( B ^ 2 ) + ( A ^ 2 ) ) |
| 24 |
23
|
resum2sqgt0 |
|- ( ( ( B e. RR /\ B =/= 0 ) /\ A e. RR ) -> 0 < ( ( B ^ 2 ) + ( A ^ 2 ) ) ) |
| 25 |
20 21 22 24
|
syl21anc |
|- ( ( B =/= 0 /\ ( A e. RR /\ B e. RR /\ C e. RR ) ) -> 0 < ( ( B ^ 2 ) + ( A ^ 2 ) ) ) |
| 26 |
|
simp1 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. RR ) |
| 27 |
26
|
recnd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. CC ) |
| 28 |
27
|
sqcld |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A ^ 2 ) e. CC ) |
| 29 |
|
simp2 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. RR ) |
| 30 |
29
|
recnd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. CC ) |
| 31 |
30
|
sqcld |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B ^ 2 ) e. CC ) |
| 32 |
28 31
|
addcomd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( ( B ^ 2 ) + ( A ^ 2 ) ) ) |
| 33 |
32
|
adantl |
|- ( ( B =/= 0 /\ ( A e. RR /\ B e. RR /\ C e. RR ) ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( ( B ^ 2 ) + ( A ^ 2 ) ) ) |
| 34 |
1 33
|
eqtrid |
|- ( ( B =/= 0 /\ ( A e. RR /\ B e. RR /\ C e. RR ) ) -> Q = ( ( B ^ 2 ) + ( A ^ 2 ) ) ) |
| 35 |
25 34
|
breqtrrd |
|- ( ( B =/= 0 /\ ( A e. RR /\ B e. RR /\ C e. RR ) ) -> 0 < Q ) |
| 36 |
35
|
ex |
|- ( B =/= 0 -> ( ( A e. RR /\ B e. RR /\ C e. RR ) -> 0 < Q ) ) |
| 37 |
19 36
|
jaoi |
|- ( ( A =/= 0 \/ B =/= 0 ) -> ( ( A e. RR /\ B e. RR /\ C e. RR ) -> 0 < Q ) ) |
| 38 |
37
|
impcom |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) -> 0 < Q ) |
| 39 |
38
|
gt0ne0d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) -> Q =/= 0 ) |
| 40 |
39
|
3ad2ant1 |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> Q =/= 0 ) |
| 41 |
|
2cnd |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> 2 e. CC ) |
| 42 |
|
recn |
|- ( B e. RR -> B e. CC ) |
| 43 |
42
|
3ad2ant2 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. CC ) |
| 44 |
43
|
adantr |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) -> B e. CC ) |
| 45 |
44
|
3ad2ant1 |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> B e. CC ) |
| 46 |
|
recn |
|- ( C e. RR -> C e. CC ) |
| 47 |
46
|
3ad2ant3 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> C e. CC ) |
| 48 |
47
|
adantr |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) -> C e. CC ) |
| 49 |
48
|
3ad2ant1 |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> C e. CC ) |
| 50 |
45 49
|
mulcld |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( B x. C ) e. CC ) |
| 51 |
41 50
|
mulcld |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( 2 x. ( B x. C ) ) e. CC ) |
| 52 |
51
|
negcld |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> -u ( 2 x. ( B x. C ) ) e. CC ) |
| 53 |
49
|
sqcld |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( C ^ 2 ) e. CC ) |
| 54 |
|
recn |
|- ( A e. RR -> A e. CC ) |
| 55 |
54
|
3ad2ant1 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. CC ) |
| 56 |
55
|
adantr |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) -> A e. CC ) |
| 57 |
56
|
3ad2ant1 |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> A e. CC ) |
| 58 |
57
|
sqcld |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( A ^ 2 ) e. CC ) |
| 59 |
|
simpl |
|- ( ( R e. RR+ /\ 0 <_ D ) -> R e. RR+ ) |
| 60 |
59
|
rpcnd |
|- ( ( R e. RR+ /\ 0 <_ D ) -> R e. CC ) |
| 61 |
60
|
3ad2ant2 |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> R e. CC ) |
| 62 |
61
|
sqcld |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( R ^ 2 ) e. CC ) |
| 63 |
58 62
|
mulcld |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( A ^ 2 ) x. ( R ^ 2 ) ) e. CC ) |
| 64 |
53 63
|
subcld |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) e. CC ) |
| 65 |
|
recn |
|- ( Y e. RR -> Y e. CC ) |
| 66 |
65
|
adantl |
|- ( ( X e. RR /\ Y e. RR ) -> Y e. CC ) |
| 67 |
66
|
3ad2ant3 |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> Y e. CC ) |
| 68 |
|
eqidd |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( -u ( 2 x. ( B x. C ) ) ^ 2 ) - ( 4 x. ( Q x. ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) = ( ( -u ( 2 x. ( B x. C ) ) ^ 2 ) - ( 4 x. ( Q x. ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) |
| 69 |
13 40 52 64 67 68
|
quad |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( Q x. ( Y ^ 2 ) ) + ( ( -u ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) = 0 <-> ( Y = ( ( -u -u ( 2 x. ( B x. C ) ) + ( sqrt ` ( ( -u ( 2 x. ( B x. C ) ) ^ 2 ) - ( 4 x. ( Q x. ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) ) / ( 2 x. Q ) ) \/ Y = ( ( -u -u ( 2 x. ( B x. C ) ) - ( sqrt ` ( ( -u ( 2 x. ( B x. C ) ) ^ 2 ) - ( 4 x. ( Q x. ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) ) / ( 2 x. Q ) ) ) ) ) |
| 70 |
54
|
abscld |
|- ( A e. RR -> ( abs ` A ) e. RR ) |
| 71 |
70
|
recnd |
|- ( A e. RR -> ( abs ` A ) e. CC ) |
| 72 |
71
|
3ad2ant1 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( abs ` A ) e. CC ) |
| 73 |
72
|
adantr |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) -> ( abs ` A ) e. CC ) |
| 74 |
73
|
3ad2ant1 |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( abs ` A ) e. CC ) |
| 75 |
59
|
rpred |
|- ( ( R e. RR+ /\ 0 <_ D ) -> R e. RR ) |
| 76 |
75
|
3ad2ant2 |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> R e. RR ) |
| 77 |
76
|
resqcld |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( R ^ 2 ) e. RR ) |
| 78 |
77 12
|
remulcld |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( R ^ 2 ) x. Q ) e. RR ) |
| 79 |
|
simp1l3 |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> C e. RR ) |
| 80 |
79
|
resqcld |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( C ^ 2 ) e. RR ) |
| 81 |
78 80
|
resubcld |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) ) e. RR ) |
| 82 |
2 81
|
eqeltrid |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> D e. RR ) |
| 83 |
82
|
recnd |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> D e. CC ) |
| 84 |
83
|
sqrtcld |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( sqrt ` D ) e. CC ) |
| 85 |
41 74 84
|
mulassd |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( 2 x. ( abs ` A ) ) x. ( sqrt ` D ) ) = ( 2 x. ( ( abs ` A ) x. ( sqrt ` D ) ) ) ) |
| 86 |
85
|
oveq2d |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( 2 x. ( B x. C ) ) + ( ( 2 x. ( abs ` A ) ) x. ( sqrt ` D ) ) ) = ( ( 2 x. ( B x. C ) ) + ( 2 x. ( ( abs ` A ) x. ( sqrt ` D ) ) ) ) ) |
| 87 |
51
|
negnegd |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> -u -u ( 2 x. ( B x. C ) ) = ( 2 x. ( B x. C ) ) ) |
| 88 |
|
simpl |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) -> ( A e. RR /\ B e. RR /\ C e. RR ) ) |
| 89 |
88
|
3ad2ant1 |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( A e. RR /\ B e. RR /\ C e. RR ) ) |
| 90 |
|
simp2r |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> 0 <_ D ) |
| 91 |
1 3 4 2
|
itsclc0yqsollem2 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR /\ 0 <_ D ) -> ( sqrt ` ( ( -u ( 2 x. ( B x. C ) ) ^ 2 ) - ( 4 x. ( Q x. ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) = ( ( 2 x. ( abs ` A ) ) x. ( sqrt ` D ) ) ) |
| 92 |
89 76 90 91
|
syl3anc |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( sqrt ` ( ( -u ( 2 x. ( B x. C ) ) ^ 2 ) - ( 4 x. ( Q x. ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) = ( ( 2 x. ( abs ` A ) ) x. ( sqrt ` D ) ) ) |
| 93 |
87 92
|
oveq12d |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( -u -u ( 2 x. ( B x. C ) ) + ( sqrt ` ( ( -u ( 2 x. ( B x. C ) ) ^ 2 ) - ( 4 x. ( Q x. ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) ) = ( ( 2 x. ( B x. C ) ) + ( ( 2 x. ( abs ` A ) ) x. ( sqrt ` D ) ) ) ) |
| 94 |
74 84
|
mulcld |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( abs ` A ) x. ( sqrt ` D ) ) e. CC ) |
| 95 |
41 50 94
|
adddid |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( 2 x. ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) ) = ( ( 2 x. ( B x. C ) ) + ( 2 x. ( ( abs ` A ) x. ( sqrt ` D ) ) ) ) ) |
| 96 |
86 93 95
|
3eqtr4d |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( -u -u ( 2 x. ( B x. C ) ) + ( sqrt ` ( ( -u ( 2 x. ( B x. C ) ) ^ 2 ) - ( 4 x. ( Q x. ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) ) = ( 2 x. ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) ) ) |
| 97 |
96
|
oveq1d |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( -u -u ( 2 x. ( B x. C ) ) + ( sqrt ` ( ( -u ( 2 x. ( B x. C ) ) ^ 2 ) - ( 4 x. ( Q x. ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) ) / ( 2 x. Q ) ) = ( ( 2 x. ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) ) / ( 2 x. Q ) ) ) |
| 98 |
50 94
|
addcld |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) e. CC ) |
| 99 |
|
2ne0 |
|- 2 =/= 0 |
| 100 |
99
|
a1i |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> 2 =/= 0 ) |
| 101 |
98 13 41 40 100
|
divcan5d |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( 2 x. ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) ) / ( 2 x. Q ) ) = ( ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) ) |
| 102 |
97 101
|
eqtrd |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( -u -u ( 2 x. ( B x. C ) ) + ( sqrt ` ( ( -u ( 2 x. ( B x. C ) ) ^ 2 ) - ( 4 x. ( Q x. ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) ) / ( 2 x. Q ) ) = ( ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) ) |
| 103 |
102
|
eqeq2d |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( Y = ( ( -u -u ( 2 x. ( B x. C ) ) + ( sqrt ` ( ( -u ( 2 x. ( B x. C ) ) ^ 2 ) - ( 4 x. ( Q x. ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) ) / ( 2 x. Q ) ) <-> Y = ( ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) ) ) |
| 104 |
85
|
oveq2d |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( 2 x. ( B x. C ) ) - ( ( 2 x. ( abs ` A ) ) x. ( sqrt ` D ) ) ) = ( ( 2 x. ( B x. C ) ) - ( 2 x. ( ( abs ` A ) x. ( sqrt ` D ) ) ) ) ) |
| 105 |
87 92
|
oveq12d |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( -u -u ( 2 x. ( B x. C ) ) - ( sqrt ` ( ( -u ( 2 x. ( B x. C ) ) ^ 2 ) - ( 4 x. ( Q x. ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) ) = ( ( 2 x. ( B x. C ) ) - ( ( 2 x. ( abs ` A ) ) x. ( sqrt ` D ) ) ) ) |
| 106 |
41 50 94
|
subdid |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( 2 x. ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) ) = ( ( 2 x. ( B x. C ) ) - ( 2 x. ( ( abs ` A ) x. ( sqrt ` D ) ) ) ) ) |
| 107 |
104 105 106
|
3eqtr4d |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( -u -u ( 2 x. ( B x. C ) ) - ( sqrt ` ( ( -u ( 2 x. ( B x. C ) ) ^ 2 ) - ( 4 x. ( Q x. ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) ) = ( 2 x. ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) ) ) |
| 108 |
107
|
oveq1d |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( -u -u ( 2 x. ( B x. C ) ) - ( sqrt ` ( ( -u ( 2 x. ( B x. C ) ) ^ 2 ) - ( 4 x. ( Q x. ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) ) / ( 2 x. Q ) ) = ( ( 2 x. ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) ) / ( 2 x. Q ) ) ) |
| 109 |
50 94
|
subcld |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) e. CC ) |
| 110 |
109 13 41 40 100
|
divcan5d |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( 2 x. ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) ) / ( 2 x. Q ) ) = ( ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) ) |
| 111 |
108 110
|
eqtrd |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( -u -u ( 2 x. ( B x. C ) ) - ( sqrt ` ( ( -u ( 2 x. ( B x. C ) ) ^ 2 ) - ( 4 x. ( Q x. ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) ) / ( 2 x. Q ) ) = ( ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) ) |
| 112 |
111
|
eqeq2d |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( Y = ( ( -u -u ( 2 x. ( B x. C ) ) - ( sqrt ` ( ( -u ( 2 x. ( B x. C ) ) ^ 2 ) - ( 4 x. ( Q x. ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) ) / ( 2 x. Q ) ) <-> Y = ( ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) ) ) |
| 113 |
103 112
|
orbi12d |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( Y = ( ( -u -u ( 2 x. ( B x. C ) ) + ( sqrt ` ( ( -u ( 2 x. ( B x. C ) ) ^ 2 ) - ( 4 x. ( Q x. ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) ) / ( 2 x. Q ) ) \/ Y = ( ( -u -u ( 2 x. ( B x. C ) ) - ( sqrt ` ( ( -u ( 2 x. ( B x. C ) ) ^ 2 ) - ( 4 x. ( Q x. ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) ) / ( 2 x. Q ) ) ) <-> ( Y = ( ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) ) ) ) |
| 114 |
69 113
|
bitrd |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( Q x. ( Y ^ 2 ) ) + ( ( -u ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) = 0 <-> ( Y = ( ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) ) ) ) |
| 115 |
|
absid |
|- ( ( A e. RR /\ 0 <_ A ) -> ( abs ` A ) = A ) |
| 116 |
115
|
ex |
|- ( A e. RR -> ( 0 <_ A -> ( abs ` A ) = A ) ) |
| 117 |
116
|
3ad2ant1 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( 0 <_ A -> ( abs ` A ) = A ) ) |
| 118 |
117
|
adantr |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) -> ( 0 <_ A -> ( abs ` A ) = A ) ) |
| 119 |
118
|
3ad2ant1 |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( 0 <_ A -> ( abs ` A ) = A ) ) |
| 120 |
119
|
impcom |
|- ( ( 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( abs ` A ) = A ) |
| 121 |
120
|
oveq1d |
|- ( ( 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( ( abs ` A ) x. ( sqrt ` D ) ) = ( A x. ( sqrt ` D ) ) ) |
| 122 |
121
|
oveq2d |
|- ( ( 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) = ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) |
| 123 |
122
|
oveq1d |
|- ( ( 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) |
| 124 |
123
|
eqeq2d |
|- ( ( 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( Y = ( ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) <-> Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) |
| 125 |
121
|
oveq2d |
|- ( ( 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) = ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ) |
| 126 |
125
|
oveq1d |
|- ( ( 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) |
| 127 |
126
|
eqeq2d |
|- ( ( 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( Y = ( ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) <-> Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) ) |
| 128 |
124 127
|
orbi12d |
|- ( ( 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( ( Y = ( ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) ) <-> ( Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) |
| 129 |
|
pm1.4 |
|- ( ( Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) -> ( Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) |
| 130 |
128 129
|
biimtrdi |
|- ( ( 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( ( Y = ( ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) ) -> ( Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) |
| 131 |
50
|
adantl |
|- ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( B x. C ) e. CC ) |
| 132 |
94
|
adantl |
|- ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( ( abs ` A ) x. ( sqrt ` D ) ) e. CC ) |
| 133 |
131 132
|
subnegd |
|- ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( ( B x. C ) - -u ( ( abs ` A ) x. ( sqrt ` D ) ) ) = ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) ) |
| 134 |
74
|
adantl |
|- ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( abs ` A ) e. CC ) |
| 135 |
84
|
adantl |
|- ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( sqrt ` D ) e. CC ) |
| 136 |
134 135
|
mulneg1d |
|- ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( -u ( abs ` A ) x. ( sqrt ` D ) ) = -u ( ( abs ` A ) x. ( sqrt ` D ) ) ) |
| 137 |
89
|
simp1d |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> A e. RR ) |
| 138 |
137
|
adantl |
|- ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> A e. RR ) |
| 139 |
|
id |
|- ( A e. RR -> A e. RR ) |
| 140 |
|
0red |
|- ( A e. RR -> 0 e. RR ) |
| 141 |
139 140
|
ltnled |
|- ( A e. RR -> ( A < 0 <-> -. 0 <_ A ) ) |
| 142 |
|
ltle |
|- ( ( A e. RR /\ 0 e. RR ) -> ( A < 0 -> A <_ 0 ) ) |
| 143 |
140 142
|
mpdan |
|- ( A e. RR -> ( A < 0 -> A <_ 0 ) ) |
| 144 |
141 143
|
sylbird |
|- ( A e. RR -> ( -. 0 <_ A -> A <_ 0 ) ) |
| 145 |
144
|
3ad2ant1 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( -. 0 <_ A -> A <_ 0 ) ) |
| 146 |
145
|
adantr |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) -> ( -. 0 <_ A -> A <_ 0 ) ) |
| 147 |
146
|
3ad2ant1 |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( -. 0 <_ A -> A <_ 0 ) ) |
| 148 |
147
|
impcom |
|- ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> A <_ 0 ) |
| 149 |
138 148
|
absnidd |
|- ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( abs ` A ) = -u A ) |
| 150 |
149
|
negeqd |
|- ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> -u ( abs ` A ) = -u -u A ) |
| 151 |
57
|
adantl |
|- ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> A e. CC ) |
| 152 |
151
|
negnegd |
|- ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> -u -u A = A ) |
| 153 |
150 152
|
eqtrd |
|- ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> -u ( abs ` A ) = A ) |
| 154 |
153
|
oveq1d |
|- ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( -u ( abs ` A ) x. ( sqrt ` D ) ) = ( A x. ( sqrt ` D ) ) ) |
| 155 |
136 154
|
eqtr3d |
|- ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> -u ( ( abs ` A ) x. ( sqrt ` D ) ) = ( A x. ( sqrt ` D ) ) ) |
| 156 |
155
|
oveq2d |
|- ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( ( B x. C ) - -u ( ( abs ` A ) x. ( sqrt ` D ) ) ) = ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ) |
| 157 |
133 156
|
eqtr3d |
|- ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) = ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ) |
| 158 |
157
|
oveq1d |
|- ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) |
| 159 |
158
|
eqeq2d |
|- ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( Y = ( ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) <-> Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) ) |
| 160 |
131 132
|
negsubd |
|- ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( ( B x. C ) + -u ( ( abs ` A ) x. ( sqrt ` D ) ) ) = ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) ) |
| 161 |
155
|
oveq2d |
|- ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( ( B x. C ) + -u ( ( abs ` A ) x. ( sqrt ` D ) ) ) = ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) |
| 162 |
160 161
|
eqtr3d |
|- ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) = ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) |
| 163 |
162
|
oveq1d |
|- ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) |
| 164 |
163
|
eqeq2d |
|- ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( Y = ( ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) <-> Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) |
| 165 |
159 164
|
orbi12d |
|- ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( ( Y = ( ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) ) <-> ( Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) |
| 166 |
165
|
biimpd |
|- ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( ( Y = ( ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) ) -> ( Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) |
| 167 |
130 166
|
pm2.61ian |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( Y = ( ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) ) -> ( Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) |
| 168 |
114 167
|
sylbid |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( Q x. ( Y ^ 2 ) ) + ( ( -u ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) = 0 -> ( Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) |
| 169 |
7 168
|
syld |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) -> ( Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) |