Step |
Hyp |
Ref |
Expression |
1 |
|
itscnhlc0yqe.q |
|- Q = ( ( A ^ 2 ) + ( B ^ 2 ) ) |
2 |
|
itscnhlc0yqe.t |
|- T = -u ( 2 x. ( B x. C ) ) |
3 |
|
itscnhlc0yqe.u |
|- U = ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) |
4 |
|
itsclc0yqsollem1.d |
|- D = ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) ) |
5 |
2
|
oveq1i |
|- ( T ^ 2 ) = ( -u ( 2 x. ( B x. C ) ) ^ 2 ) |
6 |
|
2cnd |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> 2 e. CC ) |
7 |
|
simpl2 |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> B e. CC ) |
8 |
|
simpl3 |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> C e. CC ) |
9 |
7 8
|
mulcld |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( B x. C ) e. CC ) |
10 |
6 9
|
mulcld |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( 2 x. ( B x. C ) ) e. CC ) |
11 |
|
sqneg |
|- ( ( 2 x. ( B x. C ) ) e. CC -> ( -u ( 2 x. ( B x. C ) ) ^ 2 ) = ( ( 2 x. ( B x. C ) ) ^ 2 ) ) |
12 |
10 11
|
syl |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( -u ( 2 x. ( B x. C ) ) ^ 2 ) = ( ( 2 x. ( B x. C ) ) ^ 2 ) ) |
13 |
6 9
|
sqmuld |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( ( 2 x. ( B x. C ) ) ^ 2 ) = ( ( 2 ^ 2 ) x. ( ( B x. C ) ^ 2 ) ) ) |
14 |
|
sq2 |
|- ( 2 ^ 2 ) = 4 |
15 |
14
|
a1i |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( 2 ^ 2 ) = 4 ) |
16 |
7 8
|
sqmuld |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( ( B x. C ) ^ 2 ) = ( ( B ^ 2 ) x. ( C ^ 2 ) ) ) |
17 |
15 16
|
oveq12d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( ( 2 ^ 2 ) x. ( ( B x. C ) ^ 2 ) ) = ( 4 x. ( ( B ^ 2 ) x. ( C ^ 2 ) ) ) ) |
18 |
12 13 17
|
3eqtrd |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( -u ( 2 x. ( B x. C ) ) ^ 2 ) = ( 4 x. ( ( B ^ 2 ) x. ( C ^ 2 ) ) ) ) |
19 |
5 18
|
eqtrid |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( T ^ 2 ) = ( 4 x. ( ( B ^ 2 ) x. ( C ^ 2 ) ) ) ) |
20 |
1 3
|
oveq12i |
|- ( Q x. U ) = ( ( ( A ^ 2 ) + ( B ^ 2 ) ) x. ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) |
21 |
|
simpl1 |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> A e. CC ) |
22 |
21
|
sqcld |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( A ^ 2 ) e. CC ) |
23 |
7
|
sqcld |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( B ^ 2 ) e. CC ) |
24 |
22 23
|
addcld |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) e. CC ) |
25 |
8
|
sqcld |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( C ^ 2 ) e. CC ) |
26 |
|
simpr |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> R e. CC ) |
27 |
26
|
sqcld |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( R ^ 2 ) e. CC ) |
28 |
22 27
|
mulcld |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( ( A ^ 2 ) x. ( R ^ 2 ) ) e. CC ) |
29 |
24 25 28
|
subdid |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) x. ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) = ( ( ( ( A ^ 2 ) + ( B ^ 2 ) ) x. ( C ^ 2 ) ) - ( ( ( A ^ 2 ) + ( B ^ 2 ) ) x. ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) |
30 |
22 23 25
|
adddird |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) x. ( C ^ 2 ) ) = ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) + ( ( B ^ 2 ) x. ( C ^ 2 ) ) ) ) |
31 |
22 23 28
|
adddird |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) x. ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) = ( ( ( A ^ 2 ) x. ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) + ( ( B ^ 2 ) x. ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) |
32 |
30 31
|
oveq12d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( ( ( ( A ^ 2 ) + ( B ^ 2 ) ) x. ( C ^ 2 ) ) - ( ( ( A ^ 2 ) + ( B ^ 2 ) ) x. ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) = ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) + ( ( B ^ 2 ) x. ( C ^ 2 ) ) ) - ( ( ( A ^ 2 ) x. ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) + ( ( B ^ 2 ) x. ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) |
33 |
23 25
|
mulcld |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( ( B ^ 2 ) x. ( C ^ 2 ) ) e. CC ) |
34 |
22 25
|
mulcld |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( ( A ^ 2 ) x. ( C ^ 2 ) ) e. CC ) |
35 |
22 28
|
mulcld |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( ( A ^ 2 ) x. ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) e. CC ) |
36 |
23 27
|
mulcld |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( ( B ^ 2 ) x. ( R ^ 2 ) ) e. CC ) |
37 |
22 36
|
mulcld |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( ( A ^ 2 ) x. ( ( B ^ 2 ) x. ( R ^ 2 ) ) ) e. CC ) |
38 |
35 37
|
addcld |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( ( ( A ^ 2 ) x. ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) + ( ( A ^ 2 ) x. ( ( B ^ 2 ) x. ( R ^ 2 ) ) ) ) e. CC ) |
39 |
34 33
|
addcomd |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) + ( ( B ^ 2 ) x. ( C ^ 2 ) ) ) = ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) + ( ( A ^ 2 ) x. ( C ^ 2 ) ) ) ) |
40 |
23 22 27
|
mul12d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( ( B ^ 2 ) x. ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) = ( ( A ^ 2 ) x. ( ( B ^ 2 ) x. ( R ^ 2 ) ) ) ) |
41 |
40
|
oveq2d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( ( ( A ^ 2 ) x. ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) + ( ( B ^ 2 ) x. ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) = ( ( ( A ^ 2 ) x. ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) + ( ( A ^ 2 ) x. ( ( B ^ 2 ) x. ( R ^ 2 ) ) ) ) ) |
42 |
39 41
|
oveq12d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) + ( ( B ^ 2 ) x. ( C ^ 2 ) ) ) - ( ( ( A ^ 2 ) x. ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) + ( ( B ^ 2 ) x. ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) = ( ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) + ( ( A ^ 2 ) x. ( C ^ 2 ) ) ) - ( ( ( A ^ 2 ) x. ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) + ( ( A ^ 2 ) x. ( ( B ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) |
43 |
33 34 38 42
|
assraddsubd |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) + ( ( B ^ 2 ) x. ( C ^ 2 ) ) ) - ( ( ( A ^ 2 ) x. ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) + ( ( B ^ 2 ) x. ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) = ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) + ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) - ( ( ( A ^ 2 ) x. ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) + ( ( A ^ 2 ) x. ( ( B ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) |
44 |
29 32 43
|
3eqtrd |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) x. ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) = ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) + ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) - ( ( ( A ^ 2 ) x. ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) + ( ( A ^ 2 ) x. ( ( B ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) |
45 |
20 44
|
eqtrid |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( Q x. U ) = ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) + ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) - ( ( ( A ^ 2 ) x. ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) + ( ( A ^ 2 ) x. ( ( B ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) |
46 |
45
|
oveq2d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( 4 x. ( Q x. U ) ) = ( 4 x. ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) + ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) - ( ( ( A ^ 2 ) x. ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) + ( ( A ^ 2 ) x. ( ( B ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) ) |
47 |
19 46
|
oveq12d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( ( T ^ 2 ) - ( 4 x. ( Q x. U ) ) ) = ( ( 4 x. ( ( B ^ 2 ) x. ( C ^ 2 ) ) ) - ( 4 x. ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) + ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) - ( ( ( A ^ 2 ) x. ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) + ( ( A ^ 2 ) x. ( ( B ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) ) ) |
48 |
|
4cn |
|- 4 e. CC |
49 |
48
|
a1i |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> 4 e. CC ) |
50 |
|
simp1 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> A e. CC ) |
51 |
50
|
sqcld |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A ^ 2 ) e. CC ) |
52 |
51
|
adantr |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( A ^ 2 ) e. CC ) |
53 |
1 24
|
eqeltrid |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> Q e. CC ) |
54 |
27 53
|
mulcld |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( ( R ^ 2 ) x. Q ) e. CC ) |
55 |
54 25
|
subcld |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) ) e. CC ) |
56 |
4 55
|
eqeltrid |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> D e. CC ) |
57 |
49 52 56
|
mulassd |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( ( 4 x. ( A ^ 2 ) ) x. D ) = ( 4 x. ( ( A ^ 2 ) x. D ) ) ) |
58 |
34 38
|
subcld |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) - ( ( ( A ^ 2 ) x. ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) + ( ( A ^ 2 ) x. ( ( B ^ 2 ) x. ( R ^ 2 ) ) ) ) ) e. CC ) |
59 |
33 33 58
|
subsub4d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) - ( ( B ^ 2 ) x. ( C ^ 2 ) ) ) - ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) - ( ( ( A ^ 2 ) x. ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) + ( ( A ^ 2 ) x. ( ( B ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) = ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) - ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) + ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) - ( ( ( A ^ 2 ) x. ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) + ( ( A ^ 2 ) x. ( ( B ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) ) |
60 |
33
|
subidd |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) - ( ( B ^ 2 ) x. ( C ^ 2 ) ) ) = 0 ) |
61 |
60
|
oveq1d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) - ( ( B ^ 2 ) x. ( C ^ 2 ) ) ) - ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) - ( ( ( A ^ 2 ) x. ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) + ( ( A ^ 2 ) x. ( ( B ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) = ( 0 - ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) - ( ( ( A ^ 2 ) x. ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) + ( ( A ^ 2 ) x. ( ( B ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) |
62 |
|
0cnd |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> 0 e. CC ) |
63 |
62 34 38
|
subsub2d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( 0 - ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) - ( ( ( A ^ 2 ) x. ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) + ( ( A ^ 2 ) x. ( ( B ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) = ( 0 + ( ( ( ( A ^ 2 ) x. ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) + ( ( A ^ 2 ) x. ( ( B ^ 2 ) x. ( R ^ 2 ) ) ) ) - ( ( A ^ 2 ) x. ( C ^ 2 ) ) ) ) ) |
64 |
38 34
|
subcld |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( ( ( ( A ^ 2 ) x. ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) + ( ( A ^ 2 ) x. ( ( B ^ 2 ) x. ( R ^ 2 ) ) ) ) - ( ( A ^ 2 ) x. ( C ^ 2 ) ) ) e. CC ) |
65 |
64
|
addid2d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( 0 + ( ( ( ( A ^ 2 ) x. ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) + ( ( A ^ 2 ) x. ( ( B ^ 2 ) x. ( R ^ 2 ) ) ) ) - ( ( A ^ 2 ) x. ( C ^ 2 ) ) ) ) = ( ( ( ( A ^ 2 ) x. ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) + ( ( A ^ 2 ) x. ( ( B ^ 2 ) x. ( R ^ 2 ) ) ) ) - ( ( A ^ 2 ) x. ( C ^ 2 ) ) ) ) |
66 |
61 63 65
|
3eqtrd |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) - ( ( B ^ 2 ) x. ( C ^ 2 ) ) ) - ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) - ( ( ( A ^ 2 ) x. ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) + ( ( A ^ 2 ) x. ( ( B ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) = ( ( ( ( A ^ 2 ) x. ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) + ( ( A ^ 2 ) x. ( ( B ^ 2 ) x. ( R ^ 2 ) ) ) ) - ( ( A ^ 2 ) x. ( C ^ 2 ) ) ) ) |
67 |
59 66
|
eqtr3d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) - ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) + ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) - ( ( ( A ^ 2 ) x. ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) + ( ( A ^ 2 ) x. ( ( B ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) = ( ( ( ( A ^ 2 ) x. ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) + ( ( A ^ 2 ) x. ( ( B ^ 2 ) x. ( R ^ 2 ) ) ) ) - ( ( A ^ 2 ) x. ( C ^ 2 ) ) ) ) |
68 |
22 28 36
|
adddid |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( ( A ^ 2 ) x. ( ( ( A ^ 2 ) x. ( R ^ 2 ) ) + ( ( B ^ 2 ) x. ( R ^ 2 ) ) ) ) = ( ( ( A ^ 2 ) x. ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) + ( ( A ^ 2 ) x. ( ( B ^ 2 ) x. ( R ^ 2 ) ) ) ) ) |
69 |
22 23 27
|
adddird |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) x. ( R ^ 2 ) ) = ( ( ( A ^ 2 ) x. ( R ^ 2 ) ) + ( ( B ^ 2 ) x. ( R ^ 2 ) ) ) ) |
70 |
69
|
eqcomd |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( ( ( A ^ 2 ) x. ( R ^ 2 ) ) + ( ( B ^ 2 ) x. ( R ^ 2 ) ) ) = ( ( ( A ^ 2 ) + ( B ^ 2 ) ) x. ( R ^ 2 ) ) ) |
71 |
70
|
oveq2d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( ( A ^ 2 ) x. ( ( ( A ^ 2 ) x. ( R ^ 2 ) ) + ( ( B ^ 2 ) x. ( R ^ 2 ) ) ) ) = ( ( A ^ 2 ) x. ( ( ( A ^ 2 ) + ( B ^ 2 ) ) x. ( R ^ 2 ) ) ) ) |
72 |
68 71
|
eqtr3d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( ( ( A ^ 2 ) x. ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) + ( ( A ^ 2 ) x. ( ( B ^ 2 ) x. ( R ^ 2 ) ) ) ) = ( ( A ^ 2 ) x. ( ( ( A ^ 2 ) + ( B ^ 2 ) ) x. ( R ^ 2 ) ) ) ) |
73 |
72
|
oveq1d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( ( ( ( A ^ 2 ) x. ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) + ( ( A ^ 2 ) x. ( ( B ^ 2 ) x. ( R ^ 2 ) ) ) ) - ( ( A ^ 2 ) x. ( C ^ 2 ) ) ) = ( ( ( A ^ 2 ) x. ( ( ( A ^ 2 ) + ( B ^ 2 ) ) x. ( R ^ 2 ) ) ) - ( ( A ^ 2 ) x. ( C ^ 2 ) ) ) ) |
74 |
24 27
|
mulcld |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) x. ( R ^ 2 ) ) e. CC ) |
75 |
22 74 25
|
subdid |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( ( A ^ 2 ) x. ( ( ( ( A ^ 2 ) + ( B ^ 2 ) ) x. ( R ^ 2 ) ) - ( C ^ 2 ) ) ) = ( ( ( A ^ 2 ) x. ( ( ( A ^ 2 ) + ( B ^ 2 ) ) x. ( R ^ 2 ) ) ) - ( ( A ^ 2 ) x. ( C ^ 2 ) ) ) ) |
76 |
73 75
|
eqtr4d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( ( ( ( A ^ 2 ) x. ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) + ( ( A ^ 2 ) x. ( ( B ^ 2 ) x. ( R ^ 2 ) ) ) ) - ( ( A ^ 2 ) x. ( C ^ 2 ) ) ) = ( ( A ^ 2 ) x. ( ( ( ( A ^ 2 ) + ( B ^ 2 ) ) x. ( R ^ 2 ) ) - ( C ^ 2 ) ) ) ) |
77 |
1
|
a1i |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> Q = ( ( A ^ 2 ) + ( B ^ 2 ) ) ) |
78 |
77
|
oveq2d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( ( R ^ 2 ) x. Q ) = ( ( R ^ 2 ) x. ( ( A ^ 2 ) + ( B ^ 2 ) ) ) ) |
79 |
27 24
|
mulcomd |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( ( R ^ 2 ) x. ( ( A ^ 2 ) + ( B ^ 2 ) ) ) = ( ( ( A ^ 2 ) + ( B ^ 2 ) ) x. ( R ^ 2 ) ) ) |
80 |
78 79
|
eqtrd |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( ( R ^ 2 ) x. Q ) = ( ( ( A ^ 2 ) + ( B ^ 2 ) ) x. ( R ^ 2 ) ) ) |
81 |
80
|
oveq1d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) ) = ( ( ( ( A ^ 2 ) + ( B ^ 2 ) ) x. ( R ^ 2 ) ) - ( C ^ 2 ) ) ) |
82 |
4 81
|
eqtrid |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> D = ( ( ( ( A ^ 2 ) + ( B ^ 2 ) ) x. ( R ^ 2 ) ) - ( C ^ 2 ) ) ) |
83 |
82
|
eqcomd |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( ( ( ( A ^ 2 ) + ( B ^ 2 ) ) x. ( R ^ 2 ) ) - ( C ^ 2 ) ) = D ) |
84 |
83
|
oveq2d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( ( A ^ 2 ) x. ( ( ( ( A ^ 2 ) + ( B ^ 2 ) ) x. ( R ^ 2 ) ) - ( C ^ 2 ) ) ) = ( ( A ^ 2 ) x. D ) ) |
85 |
67 76 84
|
3eqtrd |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) - ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) + ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) - ( ( ( A ^ 2 ) x. ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) + ( ( A ^ 2 ) x. ( ( B ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) = ( ( A ^ 2 ) x. D ) ) |
86 |
85
|
oveq2d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( 4 x. ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) - ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) + ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) - ( ( ( A ^ 2 ) x. ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) + ( ( A ^ 2 ) x. ( ( B ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) ) = ( 4 x. ( ( A ^ 2 ) x. D ) ) ) |
87 |
33 58
|
addcld |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) + ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) - ( ( ( A ^ 2 ) x. ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) + ( ( A ^ 2 ) x. ( ( B ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) e. CC ) |
88 |
49 33 87
|
subdid |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( 4 x. ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) - ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) + ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) - ( ( ( A ^ 2 ) x. ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) + ( ( A ^ 2 ) x. ( ( B ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) ) = ( ( 4 x. ( ( B ^ 2 ) x. ( C ^ 2 ) ) ) - ( 4 x. ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) + ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) - ( ( ( A ^ 2 ) x. ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) + ( ( A ^ 2 ) x. ( ( B ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) ) ) |
89 |
57 86 88
|
3eqtr2rd |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( ( 4 x. ( ( B ^ 2 ) x. ( C ^ 2 ) ) ) - ( 4 x. ( ( ( B ^ 2 ) x. ( C ^ 2 ) ) + ( ( ( A ^ 2 ) x. ( C ^ 2 ) ) - ( ( ( A ^ 2 ) x. ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) + ( ( A ^ 2 ) x. ( ( B ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) ) = ( ( 4 x. ( A ^ 2 ) ) x. D ) ) |
90 |
47 89
|
eqtrd |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( ( T ^ 2 ) - ( 4 x. ( Q x. U ) ) ) = ( ( 4 x. ( A ^ 2 ) ) x. D ) ) |