| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							itsclinecirc0b.i | 
							 |-  I = { 1 , 2 } | 
						
						
							| 2 | 
							
								
							 | 
							itsclinecirc0b.e | 
							 |-  E = ( RR^ ` I )  | 
						
						
							| 3 | 
							
								
							 | 
							itsclinecirc0b.p | 
							 |-  P = ( RR ^m I )  | 
						
						
							| 4 | 
							
								
							 | 
							itsclinecirc0b.s | 
							 |-  S = ( Sphere ` E )  | 
						
						
							| 5 | 
							
								
							 | 
							itsclinecirc0b.0 | 
							 |-  .0. = ( I X. { 0 } ) | 
						
						
							| 6 | 
							
								
							 | 
							itsclinecirc0b.q | 
							 |-  Q = ( ( A ^ 2 ) + ( B ^ 2 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							itsclinecirc0b.d | 
							 |-  D = ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							itsclinecirc0b.l | 
							 |-  L = ( LineM ` E )  | 
						
						
							| 9 | 
							
								
							 | 
							itsclinecirc0b.a | 
							 |-  A = ( ( X ` 2 ) - ( Y ` 2 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							itsclinecirc0b.b | 
							 |-  B = ( ( Y ` 1 ) - ( X ` 1 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							itsclinecirc0b.c | 
							 |-  C = ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) )  | 
						
						
							| 12 | 
							
								
							 | 
							eqid | 
							 |-  ( ( Y ` 2 ) - ( X ` 2 ) ) = ( ( Y ` 2 ) - ( X ` 2 ) )  | 
						
						
							| 13 | 
							
								1 2 3 8 10 12 11
							 | 
							rrx2linest | 
							 |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( X L Y ) = { p e. P | ( B x. ( p ` 2 ) ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + C ) } ) | 
						
						
							| 14 | 
							
								13
							 | 
							adantr | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( X L Y ) = { p e. P | ( B x. ( p ` 2 ) ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + C ) } ) | 
						
						
							| 15 | 
							
								
							 | 
							eqcom | 
							 |-  ( ( B x. ( p ` 2 ) ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + C ) <-> ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + C ) = ( B x. ( p ` 2 ) ) )  | 
						
						
							| 16 | 
							
								1 3
							 | 
							rrx2pxel | 
							 |-  ( Y e. P -> ( Y ` 1 ) e. RR )  | 
						
						
							| 17 | 
							
								16
							 | 
							adantl | 
							 |-  ( ( X e. P /\ Y e. P ) -> ( Y ` 1 ) e. RR )  | 
						
						
							| 18 | 
							
								1 3
							 | 
							rrx2pxel | 
							 |-  ( X e. P -> ( X ` 1 ) e. RR )  | 
						
						
							| 19 | 
							
								18
							 | 
							adantr | 
							 |-  ( ( X e. P /\ Y e. P ) -> ( X ` 1 ) e. RR )  | 
						
						
							| 20 | 
							
								17 19
							 | 
							resubcld | 
							 |-  ( ( X e. P /\ Y e. P ) -> ( ( Y ` 1 ) - ( X ` 1 ) ) e. RR )  | 
						
						
							| 21 | 
							
								10 20
							 | 
							eqeltrid | 
							 |-  ( ( X e. P /\ Y e. P ) -> B e. RR )  | 
						
						
							| 22 | 
							
								21
							 | 
							3adant3 | 
							 |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> B e. RR )  | 
						
						
							| 23 | 
							
								22
							 | 
							ad2antrr | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> B e. RR )  | 
						
						
							| 24 | 
							
								1 3
							 | 
							rrx2pyel | 
							 |-  ( p e. P -> ( p ` 2 ) e. RR )  | 
						
						
							| 25 | 
							
								24
							 | 
							adantl | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> ( p ` 2 ) e. RR )  | 
						
						
							| 26 | 
							
								23 25
							 | 
							remulcld | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> ( B x. ( p ` 2 ) ) e. RR )  | 
						
						
							| 27 | 
							
								26
							 | 
							recnd | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> ( B x. ( p ` 2 ) ) e. CC )  | 
						
						
							| 28 | 
							
								1 3
							 | 
							rrx2pyel | 
							 |-  ( Y e. P -> ( Y ` 2 ) e. RR )  | 
						
						
							| 29 | 
							
								28
							 | 
							adantl | 
							 |-  ( ( X e. P /\ Y e. P ) -> ( Y ` 2 ) e. RR )  | 
						
						
							| 30 | 
							
								1 3
							 | 
							rrx2pyel | 
							 |-  ( X e. P -> ( X ` 2 ) e. RR )  | 
						
						
							| 31 | 
							
								30
							 | 
							adantr | 
							 |-  ( ( X e. P /\ Y e. P ) -> ( X ` 2 ) e. RR )  | 
						
						
							| 32 | 
							
								29 31
							 | 
							resubcld | 
							 |-  ( ( X e. P /\ Y e. P ) -> ( ( Y ` 2 ) - ( X ` 2 ) ) e. RR )  | 
						
						
							| 33 | 
							
								32
							 | 
							3adant3 | 
							 |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( ( Y ` 2 ) - ( X ` 2 ) ) e. RR )  | 
						
						
							| 34 | 
							
								33
							 | 
							ad2antrr | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> ( ( Y ` 2 ) - ( X ` 2 ) ) e. RR )  | 
						
						
							| 35 | 
							
								1 3
							 | 
							rrx2pxel | 
							 |-  ( p e. P -> ( p ` 1 ) e. RR )  | 
						
						
							| 36 | 
							
								35
							 | 
							adantl | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> ( p ` 1 ) e. RR )  | 
						
						
							| 37 | 
							
								34 36
							 | 
							remulcld | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) e. RR )  | 
						
						
							| 38 | 
							
								37
							 | 
							recnd | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) e. CC )  | 
						
						
							| 39 | 
							
								31 17
							 | 
							remulcld | 
							 |-  ( ( X e. P /\ Y e. P ) -> ( ( X ` 2 ) x. ( Y ` 1 ) ) e. RR )  | 
						
						
							| 40 | 
							
								19 29
							 | 
							remulcld | 
							 |-  ( ( X e. P /\ Y e. P ) -> ( ( X ` 1 ) x. ( Y ` 2 ) ) e. RR )  | 
						
						
							| 41 | 
							
								39 40
							 | 
							resubcld | 
							 |-  ( ( X e. P /\ Y e. P ) -> ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) e. RR )  | 
						
						
							| 42 | 
							
								11 41
							 | 
							eqeltrid | 
							 |-  ( ( X e. P /\ Y e. P ) -> C e. RR )  | 
						
						
							| 43 | 
							
								42
							 | 
							recnd | 
							 |-  ( ( X e. P /\ Y e. P ) -> C e. CC )  | 
						
						
							| 44 | 
							
								43
							 | 
							3adant3 | 
							 |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> C e. CC )  | 
						
						
							| 45 | 
							
								44
							 | 
							ad2antrr | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> C e. CC )  | 
						
						
							| 46 | 
							
								27 38 45
							 | 
							subaddd | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> ( ( ( B x. ( p ` 2 ) ) - ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) ) = C <-> ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + C ) = ( B x. ( p ` 2 ) ) ) )  | 
						
						
							| 47 | 
							
								15 46
							 | 
							bitr4id | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> ( ( B x. ( p ` 2 ) ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + C ) <-> ( ( B x. ( p ` 2 ) ) - ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) ) = C ) )  | 
						
						
							| 48 | 
							
								31 29
							 | 
							resubcld | 
							 |-  ( ( X e. P /\ Y e. P ) -> ( ( X ` 2 ) - ( Y ` 2 ) ) e. RR )  | 
						
						
							| 49 | 
							
								9 48
							 | 
							eqeltrid | 
							 |-  ( ( X e. P /\ Y e. P ) -> A e. RR )  | 
						
						
							| 50 | 
							
								49
							 | 
							3adant3 | 
							 |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> A e. RR )  | 
						
						
							| 51 | 
							
								50
							 | 
							ad2antrr | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> A e. RR )  | 
						
						
							| 52 | 
							
								51 36
							 | 
							remulcld | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> ( A x. ( p ` 1 ) ) e. RR )  | 
						
						
							| 53 | 
							
								52
							 | 
							recnd | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> ( A x. ( p ` 1 ) ) e. CC )  | 
						
						
							| 54 | 
							
								53 27
							 | 
							addcomd | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = ( ( B x. ( p ` 2 ) ) + ( A x. ( p ` 1 ) ) ) )  | 
						
						
							| 55 | 
							
								29
							 | 
							3adant3 | 
							 |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( Y ` 2 ) e. RR )  | 
						
						
							| 56 | 
							
								55
							 | 
							ad2antrr | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> ( Y ` 2 ) e. RR )  | 
						
						
							| 57 | 
							
								56
							 | 
							recnd | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> ( Y ` 2 ) e. CC )  | 
						
						
							| 58 | 
							
								31
							 | 
							3adant3 | 
							 |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( X ` 2 ) e. RR )  | 
						
						
							| 59 | 
							
								58
							 | 
							ad2antrr | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> ( X ` 2 ) e. RR )  | 
						
						
							| 60 | 
							
								59
							 | 
							recnd | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> ( X ` 2 ) e. CC )  | 
						
						
							| 61 | 
							
								57 60
							 | 
							negsubdi2d | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> -u ( ( Y ` 2 ) - ( X ` 2 ) ) = ( ( X ` 2 ) - ( Y ` 2 ) ) )  | 
						
						
							| 62 | 
							
								9 61
							 | 
							eqtr4id | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> A = -u ( ( Y ` 2 ) - ( X ` 2 ) ) )  | 
						
						
							| 63 | 
							
								62
							 | 
							oveq1d | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> ( A x. ( p ` 1 ) ) = ( -u ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) )  | 
						
						
							| 64 | 
							
								32
							 | 
							recnd | 
							 |-  ( ( X e. P /\ Y e. P ) -> ( ( Y ` 2 ) - ( X ` 2 ) ) e. CC )  | 
						
						
							| 65 | 
							
								64
							 | 
							3adant3 | 
							 |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( ( Y ` 2 ) - ( X ` 2 ) ) e. CC )  | 
						
						
							| 66 | 
							
								65
							 | 
							ad2antrr | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> ( ( Y ` 2 ) - ( X ` 2 ) ) e. CC )  | 
						
						
							| 67 | 
							
								36
							 | 
							recnd | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> ( p ` 1 ) e. CC )  | 
						
						
							| 68 | 
							
								66 67
							 | 
							mulneg1d | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> ( -u ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) = -u ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) )  | 
						
						
							| 69 | 
							
								63 68
							 | 
							eqtr2d | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> -u ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) = ( A x. ( p ` 1 ) ) )  | 
						
						
							| 70 | 
							
								69
							 | 
							oveq2d | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> ( ( B x. ( p ` 2 ) ) + -u ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) ) = ( ( B x. ( p ` 2 ) ) + ( A x. ( p ` 1 ) ) ) )  | 
						
						
							| 71 | 
							
								27 38
							 | 
							negsubd | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> ( ( B x. ( p ` 2 ) ) + -u ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) ) = ( ( B x. ( p ` 2 ) ) - ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) ) )  | 
						
						
							| 72 | 
							
								54 70 71
							 | 
							3eqtr2rd | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> ( ( B x. ( p ` 2 ) ) - ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) ) = ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) )  | 
						
						
							| 73 | 
							
								72
							 | 
							eqeq1d | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> ( ( ( B x. ( p ` 2 ) ) - ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) ) = C <-> ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C ) )  | 
						
						
							| 74 | 
							
								47 73
							 | 
							bitrd | 
							 |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) /\ p e. P ) -> ( ( B x. ( p ` 2 ) ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + C ) <-> ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C ) )  | 
						
						
							| 75 | 
							
								74
							 | 
							rabbidva | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> { p e. P | ( B x. ( p ` 2 ) ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + C ) } = { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } ) | 
						
						
							| 76 | 
							
								14 75
							 | 
							eqtrd | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( X L Y ) = { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } ) | 
						
						
							| 77 | 
							
								76
							 | 
							eleq2d | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( Z e. ( X L Y ) <-> Z e. { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } ) ) | 
						
						
							| 78 | 
							
								77
							 | 
							anbi2d | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( Z e. ( .0. S R ) /\ Z e. ( X L Y ) ) <-> ( Z e. ( .0. S R ) /\ Z e. { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } ) ) ) | 
						
						
							| 79 | 
							
								50
							 | 
							adantr | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> A e. RR )  | 
						
						
							| 80 | 
							
								22
							 | 
							adantr | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> B e. RR )  | 
						
						
							| 81 | 
							
								42
							 | 
							3adant3 | 
							 |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> C e. RR )  | 
						
						
							| 82 | 
							
								81
							 | 
							adantr | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> C e. RR )  | 
						
						
							| 83 | 
							
								1 3 10 9
							 | 
							rrx2pnedifcoorneorr | 
							 |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( B =/= 0 \/ A =/= 0 ) )  | 
						
						
							| 84 | 
							
								83
							 | 
							orcomd | 
							 |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( A =/= 0 \/ B =/= 0 ) )  | 
						
						
							| 85 | 
							
								84
							 | 
							adantr | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( A =/= 0 \/ B =/= 0 ) )  | 
						
						
							| 86 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( R e. RR+ /\ 0 <_ D ) )  | 
						
						
							| 87 | 
							
								
							 | 
							eqid | 
							 |-  { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } = { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } | 
						
						
							| 88 | 
							
								1 2 3 4 5 6 7 87
							 | 
							itsclc0b | 
							 |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( Z e. ( .0. S R ) /\ Z e. { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } ) <-> ( Z e. P /\ ( ( ( Z ` 1 ) = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) /\ ( Z ` 2 ) = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) \/ ( ( Z ` 1 ) = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) /\ ( Z ` 2 ) = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) ) ) | 
						
						
							| 89 | 
							
								79 80 82 85 86 88
							 | 
							syl311anc | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( Z e. ( .0. S R ) /\ Z e. { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } ) <-> ( Z e. P /\ ( ( ( Z ` 1 ) = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) /\ ( Z ` 2 ) = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) \/ ( ( Z ` 1 ) = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) /\ ( Z ` 2 ) = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) ) ) | 
						
						
							| 90 | 
							
								78 89
							 | 
							bitrd | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( Z e. ( .0. S R ) /\ Z e. ( X L Y ) ) <-> ( Z e. P /\ ( ( ( Z ` 1 ) = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) /\ ( Z ` 2 ) = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) \/ ( ( Z ` 1 ) = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) /\ ( Z ` 2 ) = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) ) )  |