| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							itsclinecirc0b.i | 
							 |-  I = { 1 , 2 } | 
						
						
							| 2 | 
							
								
							 | 
							itsclinecirc0b.e | 
							 |-  E = ( RR^ ` I )  | 
						
						
							| 3 | 
							
								
							 | 
							itsclinecirc0b.p | 
							 |-  P = ( RR ^m I )  | 
						
						
							| 4 | 
							
								
							 | 
							itsclinecirc0b.s | 
							 |-  S = ( Sphere ` E )  | 
						
						
							| 5 | 
							
								
							 | 
							itsclinecirc0b.0 | 
							 |-  .0. = ( I X. { 0 } ) | 
						
						
							| 6 | 
							
								
							 | 
							itsclinecirc0b.q | 
							 |-  Q = ( ( A ^ 2 ) + ( B ^ 2 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							itsclinecirc0b.d | 
							 |-  D = ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							itsclinecirc0b.l | 
							 |-  L = ( LineM ` E )  | 
						
						
							| 9 | 
							
								
							 | 
							itsclinecirc0b.a | 
							 |-  A = ( ( X ` 2 ) - ( Y ` 2 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							itsclinecirc0b.b | 
							 |-  B = ( ( Y ` 1 ) - ( X ` 1 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							itsclinecirc0b.c | 
							 |-  C = ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) )  | 
						
						
							| 12 | 
							
								
							 | 
							elin | 
							 |-  ( z e. ( ( .0. S R ) i^i ( X L Y ) ) <-> ( z e. ( .0. S R ) /\ z e. ( X L Y ) ) )  | 
						
						
							| 13 | 
							
								1 2 3 4 5 6 7 8 9 10 11
							 | 
							itsclinecirc0b | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( z e. ( .0. S R ) /\ z e. ( X L Y ) ) <-> ( z e. P /\ ( ( ( z ` 1 ) = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) /\ ( z ` 2 ) = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) \/ ( ( z ` 1 ) = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) /\ ( z ` 2 ) = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) ) )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							bitrid | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( z e. ( ( .0. S R ) i^i ( X L Y ) ) <-> ( z e. P /\ ( ( ( z ` 1 ) = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) /\ ( z ` 2 ) = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) \/ ( ( z ` 1 ) = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) /\ ( z ` 2 ) = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) ) )  | 
						
						
							| 15 | 
							
								1 3
							 | 
							rrx2pyel | 
							 |-  ( X e. P -> ( X ` 2 ) e. RR )  | 
						
						
							| 16 | 
							
								15
							 | 
							adantr | 
							 |-  ( ( X e. P /\ Y e. P ) -> ( X ` 2 ) e. RR )  | 
						
						
							| 17 | 
							
								1 3
							 | 
							rrx2pyel | 
							 |-  ( Y e. P -> ( Y ` 2 ) e. RR )  | 
						
						
							| 18 | 
							
								17
							 | 
							adantl | 
							 |-  ( ( X e. P /\ Y e. P ) -> ( Y ` 2 ) e. RR )  | 
						
						
							| 19 | 
							
								16 18
							 | 
							resubcld | 
							 |-  ( ( X e. P /\ Y e. P ) -> ( ( X ` 2 ) - ( Y ` 2 ) ) e. RR )  | 
						
						
							| 20 | 
							
								9 19
							 | 
							eqeltrid | 
							 |-  ( ( X e. P /\ Y e. P ) -> A e. RR )  | 
						
						
							| 21 | 
							
								20
							 | 
							3adant3 | 
							 |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> A e. RR )  | 
						
						
							| 22 | 
							
								21
							 | 
							adantr | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> A e. RR )  | 
						
						
							| 23 | 
							
								1 3
							 | 
							rrx2pxel | 
							 |-  ( Y e. P -> ( Y ` 1 ) e. RR )  | 
						
						
							| 24 | 
							
								23
							 | 
							adantl | 
							 |-  ( ( X e. P /\ Y e. P ) -> ( Y ` 1 ) e. RR )  | 
						
						
							| 25 | 
							
								1 3
							 | 
							rrx2pxel | 
							 |-  ( X e. P -> ( X ` 1 ) e. RR )  | 
						
						
							| 26 | 
							
								25
							 | 
							adantr | 
							 |-  ( ( X e. P /\ Y e. P ) -> ( X ` 1 ) e. RR )  | 
						
						
							| 27 | 
							
								24 26
							 | 
							resubcld | 
							 |-  ( ( X e. P /\ Y e. P ) -> ( ( Y ` 1 ) - ( X ` 1 ) ) e. RR )  | 
						
						
							| 28 | 
							
								10 27
							 | 
							eqeltrid | 
							 |-  ( ( X e. P /\ Y e. P ) -> B e. RR )  | 
						
						
							| 29 | 
							
								28
							 | 
							3adant3 | 
							 |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> B e. RR )  | 
						
						
							| 30 | 
							
								29
							 | 
							adantr | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> B e. RR )  | 
						
						
							| 31 | 
							
								16 24
							 | 
							remulcld | 
							 |-  ( ( X e. P /\ Y e. P ) -> ( ( X ` 2 ) x. ( Y ` 1 ) ) e. RR )  | 
						
						
							| 32 | 
							
								26 18
							 | 
							remulcld | 
							 |-  ( ( X e. P /\ Y e. P ) -> ( ( X ` 1 ) x. ( Y ` 2 ) ) e. RR )  | 
						
						
							| 33 | 
							
								31 32
							 | 
							resubcld | 
							 |-  ( ( X e. P /\ Y e. P ) -> ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) e. RR )  | 
						
						
							| 34 | 
							
								11 33
							 | 
							eqeltrid | 
							 |-  ( ( X e. P /\ Y e. P ) -> C e. RR )  | 
						
						
							| 35 | 
							
								34
							 | 
							3adant3 | 
							 |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> C e. RR )  | 
						
						
							| 36 | 
							
								35
							 | 
							adantr | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> C e. RR )  | 
						
						
							| 37 | 
							
								22 30 36
							 | 
							3jca | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( A e. RR /\ B e. RR /\ C e. RR ) )  | 
						
						
							| 38 | 
							
								21 29 35
							 | 
							3jca | 
							 |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( A e. RR /\ B e. RR /\ C e. RR ) )  | 
						
						
							| 39 | 
							
								
							 | 
							rpre | 
							 |-  ( R e. RR+ -> R e. RR )  | 
						
						
							| 40 | 
							
								39
							 | 
							adantr | 
							 |-  ( ( R e. RR+ /\ 0 <_ D ) -> R e. RR )  | 
						
						
							| 41 | 
							
								6 7
							 | 
							itsclc0lem3 | 
							 |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR ) -> D e. RR )  | 
						
						
							| 42 | 
							
								38 40 41
							 | 
							syl2an | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> D e. RR )  | 
						
						
							| 43 | 
							
								
							 | 
							simprr | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> 0 <_ D )  | 
						
						
							| 44 | 
							
								42 43
							 | 
							jca | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( D e. RR /\ 0 <_ D ) )  | 
						
						
							| 45 | 
							
								20 28
							 | 
							jca | 
							 |-  ( ( X e. P /\ Y e. P ) -> ( A e. RR /\ B e. RR ) )  | 
						
						
							| 46 | 
							
								6
							 | 
							resum2sqcl | 
							 |-  ( ( A e. RR /\ B e. RR ) -> Q e. RR )  | 
						
						
							| 47 | 
							
								45 46
							 | 
							syl | 
							 |-  ( ( X e. P /\ Y e. P ) -> Q e. RR )  | 
						
						
							| 48 | 
							
								47
							 | 
							3adant3 | 
							 |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> Q e. RR )  | 
						
						
							| 49 | 
							
								1 3 10 9
							 | 
							rrx2pnedifcoorneorr | 
							 |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( B =/= 0 \/ A =/= 0 ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							orcomd | 
							 |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( A =/= 0 \/ B =/= 0 ) )  | 
						
						
							| 51 | 
							
								6
							 | 
							resum2sqorgt0 | 
							 |-  ( ( A e. RR /\ B e. RR /\ ( A =/= 0 \/ B =/= 0 ) ) -> 0 < Q )  | 
						
						
							| 52 | 
							
								21 29 50 51
							 | 
							syl3anc | 
							 |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> 0 < Q )  | 
						
						
							| 53 | 
							
								52
							 | 
							gt0ne0d | 
							 |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> Q =/= 0 )  | 
						
						
							| 54 | 
							
								48 53
							 | 
							jca | 
							 |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( Q e. RR /\ Q =/= 0 ) )  | 
						
						
							| 55 | 
							
								54
							 | 
							adantr | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( Q e. RR /\ Q =/= 0 ) )  | 
						
						
							| 56 | 
							
								
							 | 
							itsclc0lem1 | 
							 |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( D e. RR /\ 0 <_ D ) /\ ( Q e. RR /\ Q =/= 0 ) ) -> ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) e. RR )  | 
						
						
							| 57 | 
							
								37 44 55 56
							 | 
							syl3anc | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) e. RR )  | 
						
						
							| 58 | 
							
								30 22 36
							 | 
							3jca | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( B e. RR /\ A e. RR /\ C e. RR ) )  | 
						
						
							| 59 | 
							
								48
							 | 
							adantr | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> Q e. RR )  | 
						
						
							| 60 | 
							
								53
							 | 
							adantr | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> Q =/= 0 )  | 
						
						
							| 61 | 
							
								59 60
							 | 
							jca | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( Q e. RR /\ Q =/= 0 ) )  | 
						
						
							| 62 | 
							
								
							 | 
							itsclc0lem2 | 
							 |-  ( ( ( B e. RR /\ A e. RR /\ C e. RR ) /\ ( D e. RR /\ 0 <_ D ) /\ ( Q e. RR /\ Q =/= 0 ) ) -> ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) e. RR )  | 
						
						
							| 63 | 
							
								58 44 61 62
							 | 
							syl3anc | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) e. RR )  | 
						
						
							| 64 | 
							
								
							 | 
							itsclc0lem2 | 
							 |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( D e. RR /\ 0 <_ D ) /\ ( Q e. RR /\ Q =/= 0 ) ) -> ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) e. RR )  | 
						
						
							| 65 | 
							
								37 44 61 64
							 | 
							syl3anc | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) e. RR )  | 
						
						
							| 66 | 
							
								
							 | 
							itsclc0lem1 | 
							 |-  ( ( ( B e. RR /\ A e. RR /\ C e. RR ) /\ ( D e. RR /\ 0 <_ D ) /\ ( Q e. RR /\ Q =/= 0 ) ) -> ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) e. RR )  | 
						
						
							| 67 | 
							
								58 44 61 66
							 | 
							syl3anc | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) e. RR )  | 
						
						
							| 68 | 
							
								1 3
							 | 
							prelrrx2b | 
							 |-  ( ( ( ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) e. RR /\ ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) e. RR ) /\ ( ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) e. RR /\ ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) e. RR ) ) -> ( ( z e. P /\ ( ( ( z ` 1 ) = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) /\ ( z ` 2 ) = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) \/ ( ( z ` 1 ) = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) /\ ( z ` 2 ) = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) <-> z e. { { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } , { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } } ) ) | 
						
						
							| 69 | 
							
								57 63 65 67 68
							 | 
							syl22anc | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( z e. P /\ ( ( ( z ` 1 ) = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) /\ ( z ` 2 ) = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) \/ ( ( z ` 1 ) = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) /\ ( z ` 2 ) = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) <-> z e. { { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } , { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } } ) ) | 
						
						
							| 70 | 
							
								14 69
							 | 
							bitrd | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( z e. ( ( .0. S R ) i^i ( X L Y ) ) <-> z e. { { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } , { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } } ) ) | 
						
						
							| 71 | 
							
								70
							 | 
							eqrdv | 
							 |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( .0. S R ) i^i ( X L Y ) ) = { { <. 1 , ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) >. } , { <. 1 , ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) >. , <. 2 , ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) >. } } ) |