Step |
Hyp |
Ref |
Expression |
1 |
|
itscnhlc0yqe.q |
|- Q = ( ( A ^ 2 ) + ( B ^ 2 ) ) |
2 |
|
itsclc0yqsol.d |
|- D = ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) ) |
3 |
|
simpl |
|- ( ( A e. RR /\ A =/= 0 ) -> A e. RR ) |
4 |
3
|
3anim1i |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) -> ( A e. RR /\ B e. RR /\ C e. RR ) ) |
5 |
|
simpr |
|- ( ( A e. RR /\ A =/= 0 ) -> A =/= 0 ) |
6 |
5
|
3ad2ant1 |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) -> A =/= 0 ) |
7 |
6
|
orcd |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) -> ( A =/= 0 \/ B =/= 0 ) ) |
8 |
4 7
|
jca |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) -> ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) ) |
9 |
8
|
3anim1i |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) |
10 |
1 2
|
itsclc0yqsol |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) -> ( Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) |
11 |
9 10
|
syl |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) -> ( Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) |
12 |
11
|
imp |
|- ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) /\ ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) ) -> ( Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) |
13 |
|
oveq2 |
|- ( Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) -> ( B x. Y ) = ( B x. ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) ) |
14 |
13
|
oveq2d |
|- ( Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) -> ( ( A x. X ) + ( B x. Y ) ) = ( ( A x. X ) + ( B x. ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) |
15 |
14
|
eqeq1d |
|- ( Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) -> ( ( ( A x. X ) + ( B x. Y ) ) = C <-> ( ( A x. X ) + ( B x. ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) ) = C ) ) |
16 |
|
simp12 |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> B e. RR ) |
17 |
16
|
recnd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> B e. CC ) |
18 |
|
simp13 |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> C e. RR ) |
19 |
18
|
recnd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> C e. CC ) |
20 |
17 19
|
mulcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( B x. C ) e. CC ) |
21 |
|
simp11l |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> A e. RR ) |
22 |
21
|
recnd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> A e. CC ) |
23 |
|
rpre |
|- ( R e. RR+ -> R e. RR ) |
24 |
23
|
adantr |
|- ( ( R e. RR+ /\ 0 <_ D ) -> R e. RR ) |
25 |
24
|
adantl |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> R e. RR ) |
26 |
25
|
resqcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( R ^ 2 ) e. RR ) |
27 |
|
simp1l |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) -> A e. RR ) |
28 |
|
simp2 |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) -> B e. RR ) |
29 |
1
|
resum2sqcl |
|- ( ( A e. RR /\ B e. RR ) -> Q e. RR ) |
30 |
27 28 29
|
syl2anc |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) -> Q e. RR ) |
31 |
30
|
adantr |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> Q e. RR ) |
32 |
26 31
|
remulcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( R ^ 2 ) x. Q ) e. RR ) |
33 |
|
simpl3 |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> C e. RR ) |
34 |
33
|
resqcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( C ^ 2 ) e. RR ) |
35 |
32 34
|
resubcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) ) e. RR ) |
36 |
2 35
|
eqeltrid |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> D e. RR ) |
37 |
36
|
3adant3 |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> D e. RR ) |
38 |
37
|
recnd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> D e. CC ) |
39 |
38
|
sqrtcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( sqrt ` D ) e. CC ) |
40 |
22 39
|
mulcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( A x. ( sqrt ` D ) ) e. CC ) |
41 |
20 40
|
subcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) e. CC ) |
42 |
30
|
3ad2ant1 |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> Q e. RR ) |
43 |
42
|
recnd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> Q e. CC ) |
44 |
1
|
resum2sqgt0 |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR ) -> 0 < Q ) |
45 |
44
|
3adant3 |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) -> 0 < Q ) |
46 |
45
|
gt0ne0d |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) -> Q =/= 0 ) |
47 |
46
|
3ad2ant1 |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> Q =/= 0 ) |
48 |
17 41 43 47
|
divassd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( B x. ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ) / Q ) = ( B x. ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) ) |
49 |
48
|
eqcomd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( B x. ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) = ( ( B x. ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ) / Q ) ) |
50 |
49
|
oveq2d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( A x. X ) + ( B x. ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) ) = ( ( A x. X ) + ( ( B x. ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ) / Q ) ) ) |
51 |
19 43 47
|
divcan3d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( Q x. C ) / Q ) = C ) |
52 |
51
|
eqcomd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> C = ( ( Q x. C ) / Q ) ) |
53 |
50 52
|
eqeq12d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( A x. X ) + ( B x. ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) ) = C <-> ( ( A x. X ) + ( ( B x. ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ) / Q ) ) = ( ( Q x. C ) / Q ) ) ) |
54 |
43 19
|
mulcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( Q x. C ) e. CC ) |
55 |
17 41
|
mulcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( B x. ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ) e. CC ) |
56 |
54 55 43 47
|
divsubdird |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( Q x. C ) - ( B x. ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ) ) / Q ) = ( ( ( Q x. C ) / Q ) - ( ( B x. ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ) / Q ) ) ) |
57 |
56
|
eqcomd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( Q x. C ) / Q ) - ( ( B x. ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ) / Q ) ) = ( ( ( Q x. C ) - ( B x. ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ) ) / Q ) ) |
58 |
57
|
eqeq1d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( Q x. C ) / Q ) - ( ( B x. ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ) / Q ) ) = ( A x. X ) <-> ( ( ( Q x. C ) - ( B x. ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ) ) / Q ) = ( A x. X ) ) ) |
59 |
54 43 47
|
divcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( Q x. C ) / Q ) e. CC ) |
60 |
55 43 47
|
divcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( B x. ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ) / Q ) e. CC ) |
61 |
|
simp3l |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> X e. RR ) |
62 |
61
|
recnd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> X e. CC ) |
63 |
22 62
|
mulcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( A x. X ) e. CC ) |
64 |
59 60 63
|
subadd2d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( Q x. C ) / Q ) - ( ( B x. ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ) / Q ) ) = ( A x. X ) <-> ( ( A x. X ) + ( ( B x. ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ) / Q ) ) = ( ( Q x. C ) / Q ) ) ) |
65 |
|
eqcom |
|- ( ( ( ( ( Q x. C ) - ( B x. ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ) ) / Q ) / A ) = X <-> X = ( ( ( ( Q x. C ) - ( B x. ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ) ) / Q ) / A ) ) |
66 |
65
|
a1i |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( ( Q x. C ) - ( B x. ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ) ) / Q ) / A ) = X <-> X = ( ( ( ( Q x. C ) - ( B x. ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ) ) / Q ) / A ) ) ) |
67 |
54 55
|
subcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( Q x. C ) - ( B x. ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ) ) e. CC ) |
68 |
67 43 47
|
divcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( Q x. C ) - ( B x. ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ) ) / Q ) e. CC ) |
69 |
|
simp11r |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> A =/= 0 ) |
70 |
68 62 22 69
|
divmul2d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( ( Q x. C ) - ( B x. ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ) ) / Q ) / A ) = X <-> ( ( ( Q x. C ) - ( B x. ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ) ) / Q ) = ( A x. X ) ) ) |
71 |
67 43 22 47 69
|
divdiv1d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( Q x. C ) - ( B x. ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ) ) / Q ) / A ) = ( ( ( Q x. C ) - ( B x. ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ) ) / ( Q x. A ) ) ) |
72 |
71
|
eqeq2d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( X = ( ( ( ( Q x. C ) - ( B x. ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ) ) / Q ) / A ) <-> X = ( ( ( Q x. C ) - ( B x. ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ) ) / ( Q x. A ) ) ) ) |
73 |
66 70 72
|
3bitr3d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( Q x. C ) - ( B x. ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ) ) / Q ) = ( A x. X ) <-> X = ( ( ( Q x. C ) - ( B x. ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ) ) / ( Q x. A ) ) ) ) |
74 |
58 64 73
|
3bitr3d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( A x. X ) + ( ( B x. ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ) / Q ) ) = ( ( Q x. C ) / Q ) <-> X = ( ( ( Q x. C ) - ( B x. ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ) ) / ( Q x. A ) ) ) ) |
75 |
53 74
|
bitrd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( A x. X ) + ( B x. ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) ) = C <-> X = ( ( ( Q x. C ) - ( B x. ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ) ) / ( Q x. A ) ) ) ) |
76 |
15 75
|
sylan9bbr |
|- ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) /\ Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) -> ( ( ( A x. X ) + ( B x. Y ) ) = C <-> X = ( ( ( Q x. C ) - ( B x. ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ) ) / ( Q x. A ) ) ) ) |
77 |
1
|
oveq1i |
|- ( Q x. C ) = ( ( ( A ^ 2 ) + ( B ^ 2 ) ) x. C ) |
78 |
27
|
recnd |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) -> A e. CC ) |
79 |
78
|
sqcld |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) -> ( A ^ 2 ) e. CC ) |
80 |
28
|
recnd |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) -> B e. CC ) |
81 |
80
|
sqcld |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) -> ( B ^ 2 ) e. CC ) |
82 |
|
simp3 |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) -> C e. RR ) |
83 |
82
|
recnd |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) -> C e. CC ) |
84 |
79 81 83
|
adddird |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) -> ( ( ( A ^ 2 ) + ( B ^ 2 ) ) x. C ) = ( ( ( A ^ 2 ) x. C ) + ( ( B ^ 2 ) x. C ) ) ) |
85 |
77 84
|
eqtrid |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) -> ( Q x. C ) = ( ( ( A ^ 2 ) x. C ) + ( ( B ^ 2 ) x. C ) ) ) |
86 |
85
|
adantr |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( Q x. C ) = ( ( ( A ^ 2 ) x. C ) + ( ( B ^ 2 ) x. C ) ) ) |
87 |
80
|
adantr |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> B e. CC ) |
88 |
33
|
recnd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> C e. CC ) |
89 |
87 88
|
mulcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( B x. C ) e. CC ) |
90 |
78
|
adantr |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> A e. CC ) |
91 |
36
|
recnd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> D e. CC ) |
92 |
91
|
sqrtcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( sqrt ` D ) e. CC ) |
93 |
90 92
|
mulcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( A x. ( sqrt ` D ) ) e. CC ) |
94 |
87 89 93
|
subdid |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( B x. ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ) = ( ( B x. ( B x. C ) ) - ( B x. ( A x. ( sqrt ` D ) ) ) ) ) |
95 |
80 80 83
|
mulassd |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) -> ( ( B x. B ) x. C ) = ( B x. ( B x. C ) ) ) |
96 |
|
recn |
|- ( B e. RR -> B e. CC ) |
97 |
96
|
sqvald |
|- ( B e. RR -> ( B ^ 2 ) = ( B x. B ) ) |
98 |
97
|
3ad2ant2 |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) -> ( B ^ 2 ) = ( B x. B ) ) |
99 |
98
|
eqcomd |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) -> ( B x. B ) = ( B ^ 2 ) ) |
100 |
99
|
oveq1d |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) -> ( ( B x. B ) x. C ) = ( ( B ^ 2 ) x. C ) ) |
101 |
95 100
|
eqtr3d |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) -> ( B x. ( B x. C ) ) = ( ( B ^ 2 ) x. C ) ) |
102 |
101
|
adantr |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( B x. ( B x. C ) ) = ( ( B ^ 2 ) x. C ) ) |
103 |
87 90 92
|
mul12d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( B x. ( A x. ( sqrt ` D ) ) ) = ( A x. ( B x. ( sqrt ` D ) ) ) ) |
104 |
102 103
|
oveq12d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B x. ( B x. C ) ) - ( B x. ( A x. ( sqrt ` D ) ) ) ) = ( ( ( B ^ 2 ) x. C ) - ( A x. ( B x. ( sqrt ` D ) ) ) ) ) |
105 |
94 104
|
eqtrd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( B x. ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ) = ( ( ( B ^ 2 ) x. C ) - ( A x. ( B x. ( sqrt ` D ) ) ) ) ) |
106 |
86 105
|
oveq12d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( Q x. C ) - ( B x. ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ) ) = ( ( ( ( A ^ 2 ) x. C ) + ( ( B ^ 2 ) x. C ) ) - ( ( ( B ^ 2 ) x. C ) - ( A x. ( B x. ( sqrt ` D ) ) ) ) ) ) |
107 |
90
|
sqcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( A ^ 2 ) e. CC ) |
108 |
107 88
|
mulcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A ^ 2 ) x. C ) e. CC ) |
109 |
87
|
sqcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( B ^ 2 ) e. CC ) |
110 |
109 88
|
mulcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B ^ 2 ) x. C ) e. CC ) |
111 |
108 110
|
addcomd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( A ^ 2 ) x. C ) + ( ( B ^ 2 ) x. C ) ) = ( ( ( B ^ 2 ) x. C ) + ( ( A ^ 2 ) x. C ) ) ) |
112 |
111
|
oveq1d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( A ^ 2 ) x. C ) + ( ( B ^ 2 ) x. C ) ) - ( ( ( B ^ 2 ) x. C ) - ( A x. ( B x. ( sqrt ` D ) ) ) ) ) = ( ( ( ( B ^ 2 ) x. C ) + ( ( A ^ 2 ) x. C ) ) - ( ( ( B ^ 2 ) x. C ) - ( A x. ( B x. ( sqrt ` D ) ) ) ) ) ) |
113 |
87 92
|
mulcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( B x. ( sqrt ` D ) ) e. CC ) |
114 |
90 113
|
mulcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( A x. ( B x. ( sqrt ` D ) ) ) e. CC ) |
115 |
110 108 114
|
pnncand |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( B ^ 2 ) x. C ) + ( ( A ^ 2 ) x. C ) ) - ( ( ( B ^ 2 ) x. C ) - ( A x. ( B x. ( sqrt ` D ) ) ) ) ) = ( ( ( A ^ 2 ) x. C ) + ( A x. ( B x. ( sqrt ` D ) ) ) ) ) |
116 |
106 112 115
|
3eqtrd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( Q x. C ) - ( B x. ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ) ) = ( ( ( A ^ 2 ) x. C ) + ( A x. ( B x. ( sqrt ` D ) ) ) ) ) |
117 |
116
|
oveq1d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( Q x. C ) - ( B x. ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ) ) / ( Q x. A ) ) = ( ( ( ( A ^ 2 ) x. C ) + ( A x. ( B x. ( sqrt ` D ) ) ) ) / ( Q x. A ) ) ) |
118 |
78
|
sqvald |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) -> ( A ^ 2 ) = ( A x. A ) ) |
119 |
118
|
oveq1d |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) -> ( ( A ^ 2 ) x. C ) = ( ( A x. A ) x. C ) ) |
120 |
78 78 83
|
mulassd |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) -> ( ( A x. A ) x. C ) = ( A x. ( A x. C ) ) ) |
121 |
119 120
|
eqtrd |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) -> ( ( A ^ 2 ) x. C ) = ( A x. ( A x. C ) ) ) |
122 |
121
|
adantr |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A ^ 2 ) x. C ) = ( A x. ( A x. C ) ) ) |
123 |
122
|
oveq1d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( A ^ 2 ) x. C ) + ( A x. ( B x. ( sqrt ` D ) ) ) ) = ( ( A x. ( A x. C ) ) + ( A x. ( B x. ( sqrt ` D ) ) ) ) ) |
124 |
31
|
recnd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> Q e. CC ) |
125 |
124 90
|
mulcomd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( Q x. A ) = ( A x. Q ) ) |
126 |
123 125
|
oveq12d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( A ^ 2 ) x. C ) + ( A x. ( B x. ( sqrt ` D ) ) ) ) / ( Q x. A ) ) = ( ( ( A x. ( A x. C ) ) + ( A x. ( B x. ( sqrt ` D ) ) ) ) / ( A x. Q ) ) ) |
127 |
90 88
|
mulcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( A x. C ) e. CC ) |
128 |
90 127 113
|
adddid |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( A x. ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) ) = ( ( A x. ( A x. C ) ) + ( A x. ( B x. ( sqrt ` D ) ) ) ) ) |
129 |
128
|
eqcomd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A x. ( A x. C ) ) + ( A x. ( B x. ( sqrt ` D ) ) ) ) = ( A x. ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) ) ) |
130 |
129
|
oveq1d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( A x. ( A x. C ) ) + ( A x. ( B x. ( sqrt ` D ) ) ) ) / ( A x. Q ) ) = ( ( A x. ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) ) / ( A x. Q ) ) ) |
131 |
127 113
|
addcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) e. CC ) |
132 |
46
|
adantr |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> Q =/= 0 ) |
133 |
|
simpl1r |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> A =/= 0 ) |
134 |
131 124 90 132 133
|
divcan5d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A x. ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) ) / ( A x. Q ) ) = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) ) |
135 |
130 134
|
eqtrd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( A x. ( A x. C ) ) + ( A x. ( B x. ( sqrt ` D ) ) ) ) / ( A x. Q ) ) = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) ) |
136 |
117 126 135
|
3eqtrd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( Q x. C ) - ( B x. ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ) ) / ( Q x. A ) ) = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) ) |
137 |
136
|
eqeq2d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( X = ( ( ( Q x. C ) - ( B x. ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ) ) / ( Q x. A ) ) <-> X = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) ) ) |
138 |
137
|
biimpd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( X = ( ( ( Q x. C ) - ( B x. ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ) ) / ( Q x. A ) ) -> X = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) ) ) |
139 |
138
|
3adant3 |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( X = ( ( ( Q x. C ) - ( B x. ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ) ) / ( Q x. A ) ) -> X = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) ) ) |
140 |
139
|
adantr |
|- ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) /\ Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) -> ( X = ( ( ( Q x. C ) - ( B x. ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ) ) / ( Q x. A ) ) -> X = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) ) ) |
141 |
76 140
|
sylbid |
|- ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) /\ Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) -> ( ( ( A x. X ) + ( B x. Y ) ) = C -> X = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) ) ) |
142 |
141
|
ex |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) -> ( ( ( A x. X ) + ( B x. Y ) ) = C -> X = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) ) ) ) |
143 |
142
|
com23 |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( A x. X ) + ( B x. Y ) ) = C -> ( Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) -> X = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) ) ) ) |
144 |
143
|
adantld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) -> ( Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) -> X = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) ) ) ) |
145 |
144
|
imp |
|- ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) /\ ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) ) -> ( Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) -> X = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) ) ) |
146 |
145
|
ancrd |
|- ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) /\ ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) ) -> ( Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) -> ( X = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) /\ Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) |
147 |
|
oveq2 |
|- ( Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) -> ( B x. Y ) = ( B x. ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) |
148 |
147
|
oveq2d |
|- ( Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) -> ( ( A x. X ) + ( B x. Y ) ) = ( ( A x. X ) + ( B x. ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) |
149 |
148
|
eqeq1d |
|- ( Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) -> ( ( ( A x. X ) + ( B x. Y ) ) = C <-> ( ( A x. X ) + ( B x. ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) = C ) ) |
150 |
20 40
|
addcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) e. CC ) |
151 |
17 150 43 47
|
divassd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( B x. ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) / Q ) = ( B x. ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) |
152 |
151
|
eqcomd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( B x. ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) = ( ( B x. ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) / Q ) ) |
153 |
152
|
oveq2d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( A x. X ) + ( B x. ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) = ( ( A x. X ) + ( ( B x. ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) / Q ) ) ) |
154 |
153 52
|
eqeq12d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( A x. X ) + ( B x. ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) = C <-> ( ( A x. X ) + ( ( B x. ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) / Q ) ) = ( ( Q x. C ) / Q ) ) ) |
155 |
17 150
|
mulcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( B x. ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) e. CC ) |
156 |
54 155 43 47
|
divsubdird |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( Q x. C ) - ( B x. ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) ) / Q ) = ( ( ( Q x. C ) / Q ) - ( ( B x. ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) / Q ) ) ) |
157 |
156
|
eqcomd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( Q x. C ) / Q ) - ( ( B x. ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) / Q ) ) = ( ( ( Q x. C ) - ( B x. ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) ) / Q ) ) |
158 |
157
|
eqeq1d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( Q x. C ) / Q ) - ( ( B x. ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) / Q ) ) = ( A x. X ) <-> ( ( ( Q x. C ) - ( B x. ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) ) / Q ) = ( A x. X ) ) ) |
159 |
155 43 47
|
divcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( B x. ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) / Q ) e. CC ) |
160 |
59 159 63
|
subadd2d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( Q x. C ) / Q ) - ( ( B x. ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) / Q ) ) = ( A x. X ) <-> ( ( A x. X ) + ( ( B x. ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) / Q ) ) = ( ( Q x. C ) / Q ) ) ) |
161 |
|
eqcom |
|- ( ( ( ( ( Q x. C ) - ( B x. ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) ) / Q ) / A ) = X <-> X = ( ( ( ( Q x. C ) - ( B x. ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) ) / Q ) / A ) ) |
162 |
161
|
a1i |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( ( Q x. C ) - ( B x. ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) ) / Q ) / A ) = X <-> X = ( ( ( ( Q x. C ) - ( B x. ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) ) / Q ) / A ) ) ) |
163 |
54 155
|
subcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( Q x. C ) - ( B x. ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) ) e. CC ) |
164 |
163 43 47
|
divcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( Q x. C ) - ( B x. ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) ) / Q ) e. CC ) |
165 |
164 62 22 69
|
divmul2d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( ( Q x. C ) - ( B x. ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) ) / Q ) / A ) = X <-> ( ( ( Q x. C ) - ( B x. ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) ) / Q ) = ( A x. X ) ) ) |
166 |
163 43 22 47 69
|
divdiv1d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( Q x. C ) - ( B x. ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) ) / Q ) / A ) = ( ( ( Q x. C ) - ( B x. ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) ) / ( Q x. A ) ) ) |
167 |
166
|
eqeq2d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( X = ( ( ( ( Q x. C ) - ( B x. ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) ) / Q ) / A ) <-> X = ( ( ( Q x. C ) - ( B x. ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) ) / ( Q x. A ) ) ) ) |
168 |
162 165 167
|
3bitr3d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( Q x. C ) - ( B x. ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) ) / Q ) = ( A x. X ) <-> X = ( ( ( Q x. C ) - ( B x. ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) ) / ( Q x. A ) ) ) ) |
169 |
158 160 168
|
3bitr3d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( A x. X ) + ( ( B x. ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) / Q ) ) = ( ( Q x. C ) / Q ) <-> X = ( ( ( Q x. C ) - ( B x. ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) ) / ( Q x. A ) ) ) ) |
170 |
154 169
|
bitrd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( A x. X ) + ( B x. ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) = C <-> X = ( ( ( Q x. C ) - ( B x. ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) ) / ( Q x. A ) ) ) ) |
171 |
149 170
|
sylan9bbr |
|- ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) /\ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) -> ( ( ( A x. X ) + ( B x. Y ) ) = C <-> X = ( ( ( Q x. C ) - ( B x. ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) ) / ( Q x. A ) ) ) ) |
172 |
87 89 93
|
adddid |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( B x. ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) = ( ( B x. ( B x. C ) ) + ( B x. ( A x. ( sqrt ` D ) ) ) ) ) |
173 |
102 103
|
oveq12d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B x. ( B x. C ) ) + ( B x. ( A x. ( sqrt ` D ) ) ) ) = ( ( ( B ^ 2 ) x. C ) + ( A x. ( B x. ( sqrt ` D ) ) ) ) ) |
174 |
172 173
|
eqtrd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( B x. ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) = ( ( ( B ^ 2 ) x. C ) + ( A x. ( B x. ( sqrt ` D ) ) ) ) ) |
175 |
86 174
|
oveq12d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( Q x. C ) - ( B x. ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) ) = ( ( ( ( A ^ 2 ) x. C ) + ( ( B ^ 2 ) x. C ) ) - ( ( ( B ^ 2 ) x. C ) + ( A x. ( B x. ( sqrt ` D ) ) ) ) ) ) |
176 |
111
|
oveq1d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( A ^ 2 ) x. C ) + ( ( B ^ 2 ) x. C ) ) - ( ( ( B ^ 2 ) x. C ) + ( A x. ( B x. ( sqrt ` D ) ) ) ) ) = ( ( ( ( B ^ 2 ) x. C ) + ( ( A ^ 2 ) x. C ) ) - ( ( ( B ^ 2 ) x. C ) + ( A x. ( B x. ( sqrt ` D ) ) ) ) ) ) |
177 |
110 108 114
|
pnpcand |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( B ^ 2 ) x. C ) + ( ( A ^ 2 ) x. C ) ) - ( ( ( B ^ 2 ) x. C ) + ( A x. ( B x. ( sqrt ` D ) ) ) ) ) = ( ( ( A ^ 2 ) x. C ) - ( A x. ( B x. ( sqrt ` D ) ) ) ) ) |
178 |
175 176 177
|
3eqtrd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( Q x. C ) - ( B x. ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) ) = ( ( ( A ^ 2 ) x. C ) - ( A x. ( B x. ( sqrt ` D ) ) ) ) ) |
179 |
178
|
oveq1d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( Q x. C ) - ( B x. ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) ) / ( Q x. A ) ) = ( ( ( ( A ^ 2 ) x. C ) - ( A x. ( B x. ( sqrt ` D ) ) ) ) / ( Q x. A ) ) ) |
180 |
122
|
oveq1d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( A ^ 2 ) x. C ) - ( A x. ( B x. ( sqrt ` D ) ) ) ) = ( ( A x. ( A x. C ) ) - ( A x. ( B x. ( sqrt ` D ) ) ) ) ) |
181 |
180 125
|
oveq12d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( A ^ 2 ) x. C ) - ( A x. ( B x. ( sqrt ` D ) ) ) ) / ( Q x. A ) ) = ( ( ( A x. ( A x. C ) ) - ( A x. ( B x. ( sqrt ` D ) ) ) ) / ( A x. Q ) ) ) |
182 |
90 127 113
|
subdid |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( A x. ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) ) = ( ( A x. ( A x. C ) ) - ( A x. ( B x. ( sqrt ` D ) ) ) ) ) |
183 |
182
|
eqcomd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A x. ( A x. C ) ) - ( A x. ( B x. ( sqrt ` D ) ) ) ) = ( A x. ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) ) ) |
184 |
183
|
oveq1d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( A x. ( A x. C ) ) - ( A x. ( B x. ( sqrt ` D ) ) ) ) / ( A x. Q ) ) = ( ( A x. ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) ) / ( A x. Q ) ) ) |
185 |
127 113
|
subcld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) e. CC ) |
186 |
185 124 90 132 133
|
divcan5d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A x. ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) ) / ( A x. Q ) ) = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ) |
187 |
184 186
|
eqtrd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( A x. ( A x. C ) ) - ( A x. ( B x. ( sqrt ` D ) ) ) ) / ( A x. Q ) ) = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ) |
188 |
179 181 187
|
3eqtrd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( Q x. C ) - ( B x. ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) ) / ( Q x. A ) ) = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ) |
189 |
188
|
eqeq2d |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( X = ( ( ( Q x. C ) - ( B x. ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) ) / ( Q x. A ) ) <-> X = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ) ) |
190 |
189
|
biimpd |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( X = ( ( ( Q x. C ) - ( B x. ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) ) / ( Q x. A ) ) -> X = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ) ) |
191 |
190
|
3adant3 |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( X = ( ( ( Q x. C ) - ( B x. ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) ) / ( Q x. A ) ) -> X = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ) ) |
192 |
191
|
adantr |
|- ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) /\ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) -> ( X = ( ( ( Q x. C ) - ( B x. ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) ) / ( Q x. A ) ) -> X = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ) ) |
193 |
171 192
|
sylbid |
|- ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) /\ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) -> ( ( ( A x. X ) + ( B x. Y ) ) = C -> X = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ) ) |
194 |
193
|
ex |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) -> ( ( ( A x. X ) + ( B x. Y ) ) = C -> X = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ) ) ) |
195 |
194
|
com23 |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( A x. X ) + ( B x. Y ) ) = C -> ( Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) -> X = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ) ) ) |
196 |
195
|
adantld |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) -> ( Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) -> X = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ) ) ) |
197 |
196
|
imp |
|- ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) /\ ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) ) -> ( Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) -> X = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) ) ) |
198 |
197
|
ancrd |
|- ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) /\ ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) ) -> ( Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) -> ( X = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) /\ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) |
199 |
146 198
|
orim12d |
|- ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) /\ ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) ) -> ( ( Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) -> ( ( X = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) /\ Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) \/ ( X = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) /\ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) ) |
200 |
12 199
|
mpd |
|- ( ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) /\ ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) ) -> ( ( X = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) /\ Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) \/ ( X = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) /\ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) |
201 |
200
|
ex |
|- ( ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR /\ C e. RR ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) -> ( ( X = ( ( ( A x. C ) + ( B x. ( sqrt ` D ) ) ) / Q ) /\ Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) \/ ( X = ( ( ( A x. C ) - ( B x. ( sqrt ` D ) ) ) / Q ) /\ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) ) |