| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itscnhlinecirc02p.i |
|- I = { 1 , 2 } |
| 2 |
|
itscnhlinecirc02p.e |
|- E = ( RR^ ` I ) |
| 3 |
|
itscnhlinecirc02p.p |
|- P = ( RR ^m I ) |
| 4 |
|
itscnhlinecirc02p.s |
|- S = ( Sphere ` E ) |
| 5 |
|
itscnhlinecirc02p.0 |
|- .0. = ( I X. { 0 } ) |
| 6 |
|
itscnhlinecirc02p.l |
|- L = ( LineM ` E ) |
| 7 |
|
itscnhlinecirc02p.d |
|- D = ( dist ` E ) |
| 8 |
1 3
|
rrx2pxel |
|- ( X e. P -> ( X ` 1 ) e. RR ) |
| 9 |
1 3
|
rrx2pyel |
|- ( X e. P -> ( X ` 2 ) e. RR ) |
| 10 |
8 9
|
jca |
|- ( X e. P -> ( ( X ` 1 ) e. RR /\ ( X ` 2 ) e. RR ) ) |
| 11 |
10
|
3ad2ant1 |
|- ( ( X e. P /\ Y e. P /\ ( X ` 2 ) =/= ( Y ` 2 ) ) -> ( ( X ` 1 ) e. RR /\ ( X ` 2 ) e. RR ) ) |
| 12 |
11
|
adantr |
|- ( ( ( X e. P /\ Y e. P /\ ( X ` 2 ) =/= ( Y ` 2 ) ) /\ ( R e. RR+ /\ ( X D .0. ) < R ) ) -> ( ( X ` 1 ) e. RR /\ ( X ` 2 ) e. RR ) ) |
| 13 |
1 3
|
rrx2pxel |
|- ( Y e. P -> ( Y ` 1 ) e. RR ) |
| 14 |
1 3
|
rrx2pyel |
|- ( Y e. P -> ( Y ` 2 ) e. RR ) |
| 15 |
13 14
|
jca |
|- ( Y e. P -> ( ( Y ` 1 ) e. RR /\ ( Y ` 2 ) e. RR ) ) |
| 16 |
15
|
3ad2ant2 |
|- ( ( X e. P /\ Y e. P /\ ( X ` 2 ) =/= ( Y ` 2 ) ) -> ( ( Y ` 1 ) e. RR /\ ( Y ` 2 ) e. RR ) ) |
| 17 |
16
|
adantr |
|- ( ( ( X e. P /\ Y e. P /\ ( X ` 2 ) =/= ( Y ` 2 ) ) /\ ( R e. RR+ /\ ( X D .0. ) < R ) ) -> ( ( Y ` 1 ) e. RR /\ ( Y ` 2 ) e. RR ) ) |
| 18 |
|
simpl3 |
|- ( ( ( X e. P /\ Y e. P /\ ( X ` 2 ) =/= ( Y ` 2 ) ) /\ ( R e. RR+ /\ ( X D .0. ) < R ) ) -> ( X ` 2 ) =/= ( Y ` 2 ) ) |
| 19 |
|
rpre |
|- ( R e. RR+ -> R e. RR ) |
| 20 |
19
|
adantr |
|- ( ( R e. RR+ /\ ( X D .0. ) < R ) -> R e. RR ) |
| 21 |
20
|
adantl |
|- ( ( ( X e. P /\ Y e. P /\ ( X ` 2 ) =/= ( Y ` 2 ) ) /\ ( R e. RR+ /\ ( X D .0. ) < R ) ) -> R e. RR ) |
| 22 |
|
simpl1 |
|- ( ( ( X e. P /\ Y e. P /\ ( X ` 2 ) =/= ( Y ` 2 ) ) /\ R e. RR+ ) -> X e. P ) |
| 23 |
|
2nn0 |
|- 2 e. NN0 |
| 24 |
|
eqid |
|- ( EEhil ` 2 ) = ( EEhil ` 2 ) |
| 25 |
24
|
ehlval |
|- ( 2 e. NN0 -> ( EEhil ` 2 ) = ( RR^ ` ( 1 ... 2 ) ) ) |
| 26 |
23 25
|
ax-mp |
|- ( EEhil ` 2 ) = ( RR^ ` ( 1 ... 2 ) ) |
| 27 |
|
fz12pr |
|- ( 1 ... 2 ) = { 1 , 2 } |
| 28 |
27 1
|
eqtr4i |
|- ( 1 ... 2 ) = I |
| 29 |
28
|
fveq2i |
|- ( RR^ ` ( 1 ... 2 ) ) = ( RR^ ` I ) |
| 30 |
26 29
|
eqtri |
|- ( EEhil ` 2 ) = ( RR^ ` I ) |
| 31 |
2 30
|
eqtr4i |
|- E = ( EEhil ` 2 ) |
| 32 |
1
|
oveq2i |
|- ( RR ^m I ) = ( RR ^m { 1 , 2 } ) |
| 33 |
3 32
|
eqtri |
|- P = ( RR ^m { 1 , 2 } ) |
| 34 |
1
|
xpeq1i |
|- ( I X. { 0 } ) = ( { 1 , 2 } X. { 0 } ) |
| 35 |
5 34
|
eqtri |
|- .0. = ( { 1 , 2 } X. { 0 } ) |
| 36 |
31 33 7 35
|
ehl2eudisval0 |
|- ( X e. P -> ( X D .0. ) = ( sqrt ` ( ( ( X ` 1 ) ^ 2 ) + ( ( X ` 2 ) ^ 2 ) ) ) ) |
| 37 |
22 36
|
syl |
|- ( ( ( X e. P /\ Y e. P /\ ( X ` 2 ) =/= ( Y ` 2 ) ) /\ R e. RR+ ) -> ( X D .0. ) = ( sqrt ` ( ( ( X ` 1 ) ^ 2 ) + ( ( X ` 2 ) ^ 2 ) ) ) ) |
| 38 |
37
|
breq1d |
|- ( ( ( X e. P /\ Y e. P /\ ( X ` 2 ) =/= ( Y ` 2 ) ) /\ R e. RR+ ) -> ( ( X D .0. ) < R <-> ( sqrt ` ( ( ( X ` 1 ) ^ 2 ) + ( ( X ` 2 ) ^ 2 ) ) ) < R ) ) |
| 39 |
|
rpge0 |
|- ( R e. RR+ -> 0 <_ R ) |
| 40 |
19 39
|
sqrtsqd |
|- ( R e. RR+ -> ( sqrt ` ( R ^ 2 ) ) = R ) |
| 41 |
40
|
eqcomd |
|- ( R e. RR+ -> R = ( sqrt ` ( R ^ 2 ) ) ) |
| 42 |
41
|
adantl |
|- ( ( ( X e. P /\ Y e. P /\ ( X ` 2 ) =/= ( Y ` 2 ) ) /\ R e. RR+ ) -> R = ( sqrt ` ( R ^ 2 ) ) ) |
| 43 |
42
|
breq2d |
|- ( ( ( X e. P /\ Y e. P /\ ( X ` 2 ) =/= ( Y ` 2 ) ) /\ R e. RR+ ) -> ( ( sqrt ` ( ( ( X ` 1 ) ^ 2 ) + ( ( X ` 2 ) ^ 2 ) ) ) < R <-> ( sqrt ` ( ( ( X ` 1 ) ^ 2 ) + ( ( X ` 2 ) ^ 2 ) ) ) < ( sqrt ` ( R ^ 2 ) ) ) ) |
| 44 |
43
|
biimpa |
|- ( ( ( ( X e. P /\ Y e. P /\ ( X ` 2 ) =/= ( Y ` 2 ) ) /\ R e. RR+ ) /\ ( sqrt ` ( ( ( X ` 1 ) ^ 2 ) + ( ( X ` 2 ) ^ 2 ) ) ) < R ) -> ( sqrt ` ( ( ( X ` 1 ) ^ 2 ) + ( ( X ` 2 ) ^ 2 ) ) ) < ( sqrt ` ( R ^ 2 ) ) ) |
| 45 |
22 8
|
syl |
|- ( ( ( X e. P /\ Y e. P /\ ( X ` 2 ) =/= ( Y ` 2 ) ) /\ R e. RR+ ) -> ( X ` 1 ) e. RR ) |
| 46 |
45
|
adantr |
|- ( ( ( ( X e. P /\ Y e. P /\ ( X ` 2 ) =/= ( Y ` 2 ) ) /\ R e. RR+ ) /\ ( sqrt ` ( ( ( X ` 1 ) ^ 2 ) + ( ( X ` 2 ) ^ 2 ) ) ) < R ) -> ( X ` 1 ) e. RR ) |
| 47 |
46
|
resqcld |
|- ( ( ( ( X e. P /\ Y e. P /\ ( X ` 2 ) =/= ( Y ` 2 ) ) /\ R e. RR+ ) /\ ( sqrt ` ( ( ( X ` 1 ) ^ 2 ) + ( ( X ` 2 ) ^ 2 ) ) ) < R ) -> ( ( X ` 1 ) ^ 2 ) e. RR ) |
| 48 |
22 9
|
syl |
|- ( ( ( X e. P /\ Y e. P /\ ( X ` 2 ) =/= ( Y ` 2 ) ) /\ R e. RR+ ) -> ( X ` 2 ) e. RR ) |
| 49 |
48
|
adantr |
|- ( ( ( ( X e. P /\ Y e. P /\ ( X ` 2 ) =/= ( Y ` 2 ) ) /\ R e. RR+ ) /\ ( sqrt ` ( ( ( X ` 1 ) ^ 2 ) + ( ( X ` 2 ) ^ 2 ) ) ) < R ) -> ( X ` 2 ) e. RR ) |
| 50 |
49
|
resqcld |
|- ( ( ( ( X e. P /\ Y e. P /\ ( X ` 2 ) =/= ( Y ` 2 ) ) /\ R e. RR+ ) /\ ( sqrt ` ( ( ( X ` 1 ) ^ 2 ) + ( ( X ` 2 ) ^ 2 ) ) ) < R ) -> ( ( X ` 2 ) ^ 2 ) e. RR ) |
| 51 |
47 50
|
readdcld |
|- ( ( ( ( X e. P /\ Y e. P /\ ( X ` 2 ) =/= ( Y ` 2 ) ) /\ R e. RR+ ) /\ ( sqrt ` ( ( ( X ` 1 ) ^ 2 ) + ( ( X ` 2 ) ^ 2 ) ) ) < R ) -> ( ( ( X ` 1 ) ^ 2 ) + ( ( X ` 2 ) ^ 2 ) ) e. RR ) |
| 52 |
46
|
sqge0d |
|- ( ( ( ( X e. P /\ Y e. P /\ ( X ` 2 ) =/= ( Y ` 2 ) ) /\ R e. RR+ ) /\ ( sqrt ` ( ( ( X ` 1 ) ^ 2 ) + ( ( X ` 2 ) ^ 2 ) ) ) < R ) -> 0 <_ ( ( X ` 1 ) ^ 2 ) ) |
| 53 |
49
|
sqge0d |
|- ( ( ( ( X e. P /\ Y e. P /\ ( X ` 2 ) =/= ( Y ` 2 ) ) /\ R e. RR+ ) /\ ( sqrt ` ( ( ( X ` 1 ) ^ 2 ) + ( ( X ` 2 ) ^ 2 ) ) ) < R ) -> 0 <_ ( ( X ` 2 ) ^ 2 ) ) |
| 54 |
47 50 52 53
|
addge0d |
|- ( ( ( ( X e. P /\ Y e. P /\ ( X ` 2 ) =/= ( Y ` 2 ) ) /\ R e. RR+ ) /\ ( sqrt ` ( ( ( X ` 1 ) ^ 2 ) + ( ( X ` 2 ) ^ 2 ) ) ) < R ) -> 0 <_ ( ( ( X ` 1 ) ^ 2 ) + ( ( X ` 2 ) ^ 2 ) ) ) |
| 55 |
19
|
adantl |
|- ( ( ( X e. P /\ Y e. P /\ ( X ` 2 ) =/= ( Y ` 2 ) ) /\ R e. RR+ ) -> R e. RR ) |
| 56 |
55
|
adantr |
|- ( ( ( ( X e. P /\ Y e. P /\ ( X ` 2 ) =/= ( Y ` 2 ) ) /\ R e. RR+ ) /\ ( sqrt ` ( ( ( X ` 1 ) ^ 2 ) + ( ( X ` 2 ) ^ 2 ) ) ) < R ) -> R e. RR ) |
| 57 |
56
|
resqcld |
|- ( ( ( ( X e. P /\ Y e. P /\ ( X ` 2 ) =/= ( Y ` 2 ) ) /\ R e. RR+ ) /\ ( sqrt ` ( ( ( X ` 1 ) ^ 2 ) + ( ( X ` 2 ) ^ 2 ) ) ) < R ) -> ( R ^ 2 ) e. RR ) |
| 58 |
56
|
sqge0d |
|- ( ( ( ( X e. P /\ Y e. P /\ ( X ` 2 ) =/= ( Y ` 2 ) ) /\ R e. RR+ ) /\ ( sqrt ` ( ( ( X ` 1 ) ^ 2 ) + ( ( X ` 2 ) ^ 2 ) ) ) < R ) -> 0 <_ ( R ^ 2 ) ) |
| 59 |
51 54 57 58
|
sqrtltd |
|- ( ( ( ( X e. P /\ Y e. P /\ ( X ` 2 ) =/= ( Y ` 2 ) ) /\ R e. RR+ ) /\ ( sqrt ` ( ( ( X ` 1 ) ^ 2 ) + ( ( X ` 2 ) ^ 2 ) ) ) < R ) -> ( ( ( ( X ` 1 ) ^ 2 ) + ( ( X ` 2 ) ^ 2 ) ) < ( R ^ 2 ) <-> ( sqrt ` ( ( ( X ` 1 ) ^ 2 ) + ( ( X ` 2 ) ^ 2 ) ) ) < ( sqrt ` ( R ^ 2 ) ) ) ) |
| 60 |
44 59
|
mpbird |
|- ( ( ( ( X e. P /\ Y e. P /\ ( X ` 2 ) =/= ( Y ` 2 ) ) /\ R e. RR+ ) /\ ( sqrt ` ( ( ( X ` 1 ) ^ 2 ) + ( ( X ` 2 ) ^ 2 ) ) ) < R ) -> ( ( ( X ` 1 ) ^ 2 ) + ( ( X ` 2 ) ^ 2 ) ) < ( R ^ 2 ) ) |
| 61 |
60
|
ex |
|- ( ( ( X e. P /\ Y e. P /\ ( X ` 2 ) =/= ( Y ` 2 ) ) /\ R e. RR+ ) -> ( ( sqrt ` ( ( ( X ` 1 ) ^ 2 ) + ( ( X ` 2 ) ^ 2 ) ) ) < R -> ( ( ( X ` 1 ) ^ 2 ) + ( ( X ` 2 ) ^ 2 ) ) < ( R ^ 2 ) ) ) |
| 62 |
38 61
|
sylbid |
|- ( ( ( X e. P /\ Y e. P /\ ( X ` 2 ) =/= ( Y ` 2 ) ) /\ R e. RR+ ) -> ( ( X D .0. ) < R -> ( ( ( X ` 1 ) ^ 2 ) + ( ( X ` 2 ) ^ 2 ) ) < ( R ^ 2 ) ) ) |
| 63 |
62
|
impr |
|- ( ( ( X e. P /\ Y e. P /\ ( X ` 2 ) =/= ( Y ` 2 ) ) /\ ( R e. RR+ /\ ( X D .0. ) < R ) ) -> ( ( ( X ` 1 ) ^ 2 ) + ( ( X ` 2 ) ^ 2 ) ) < ( R ^ 2 ) ) |
| 64 |
|
eqid |
|- ( ( Y ` 1 ) - ( X ` 1 ) ) = ( ( Y ` 1 ) - ( X ` 1 ) ) |
| 65 |
|
eqid |
|- ( ( X ` 2 ) - ( Y ` 2 ) ) = ( ( X ` 2 ) - ( Y ` 2 ) ) |
| 66 |
|
eqid |
|- ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) = ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) |
| 67 |
64 65 66
|
itscnhlinecirc02plem2 |
|- ( ( ( ( ( X ` 1 ) e. RR /\ ( X ` 2 ) e. RR ) /\ ( ( Y ` 1 ) e. RR /\ ( Y ` 2 ) e. RR ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) /\ ( R e. RR /\ ( ( ( X ` 1 ) ^ 2 ) + ( ( X ` 2 ) ^ 2 ) ) < ( R ^ 2 ) ) ) -> 0 < ( ( -u ( 2 x. ( ( ( Y ` 1 ) - ( X ` 1 ) ) x. ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) ) ) ^ 2 ) - ( 4 x. ( ( ( ( ( X ` 2 ) - ( Y ` 2 ) ) ^ 2 ) + ( ( ( Y ` 1 ) - ( X ` 1 ) ) ^ 2 ) ) x. ( ( ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) ^ 2 ) - ( ( ( ( X ` 2 ) - ( Y ` 2 ) ) ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) |
| 68 |
12 17 18 21 63 67
|
syl32anc |
|- ( ( ( X e. P /\ Y e. P /\ ( X ` 2 ) =/= ( Y ` 2 ) ) /\ ( R e. RR+ /\ ( X D .0. ) < R ) ) -> 0 < ( ( -u ( 2 x. ( ( ( Y ` 1 ) - ( X ` 1 ) ) x. ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) ) ) ^ 2 ) - ( 4 x. ( ( ( ( ( X ` 2 ) - ( Y ` 2 ) ) ^ 2 ) + ( ( ( Y ` 1 ) - ( X ` 1 ) ) ^ 2 ) ) x. ( ( ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) ^ 2 ) - ( ( ( ( X ` 2 ) - ( Y ` 2 ) ) ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) |