Description: A zero-fold iterated union. (Contributed by Stefan O'Rear, 11-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ituni.u | |- U = ( x e. _V |-> ( rec ( ( y e. _V |-> U. y ) , x ) |` _om ) ) |
|
Assertion | ituni0 | |- ( A e. V -> ( ( U ` A ) ` (/) ) = A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ituni.u | |- U = ( x e. _V |-> ( rec ( ( y e. _V |-> U. y ) , x ) |` _om ) ) |
|
2 | 1 | itunifval | |- ( A e. V -> ( U ` A ) = ( rec ( ( y e. _V |-> U. y ) , A ) |` _om ) ) |
3 | 2 | fveq1d | |- ( A e. V -> ( ( U ` A ) ` (/) ) = ( ( rec ( ( y e. _V |-> U. y ) , A ) |` _om ) ` (/) ) ) |
4 | fr0g | |- ( A e. V -> ( ( rec ( ( y e. _V |-> U. y ) , A ) |` _om ) ` (/) ) = A ) |
|
5 | 3 4 | eqtrd | |- ( A e. V -> ( ( U ` A ) ` (/) ) = A ) |