Metamath Proof Explorer


Theorem ituni0

Description: A zero-fold iterated union. (Contributed by Stefan O'Rear, 11-Feb-2015)

Ref Expression
Hypothesis ituni.u
|- U = ( x e. _V |-> ( rec ( ( y e. _V |-> U. y ) , x ) |` _om ) )
Assertion ituni0
|- ( A e. V -> ( ( U ` A ) ` (/) ) = A )

Proof

Step Hyp Ref Expression
1 ituni.u
 |-  U = ( x e. _V |-> ( rec ( ( y e. _V |-> U. y ) , x ) |` _om ) )
2 1 itunifval
 |-  ( A e. V -> ( U ` A ) = ( rec ( ( y e. _V |-> U. y ) , A ) |` _om ) )
3 2 fveq1d
 |-  ( A e. V -> ( ( U ` A ) ` (/) ) = ( ( rec ( ( y e. _V |-> U. y ) , A ) |` _om ) ` (/) ) )
4 fr0g
 |-  ( A e. V -> ( ( rec ( ( y e. _V |-> U. y ) , A ) |` _om ) ` (/) ) = A )
5 3 4 eqtrd
 |-  ( A e. V -> ( ( U ` A ) ` (/) ) = A )