Description: Functionality of the iterated union. (Contributed by Stefan O'Rear, 11-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ituni.u | |- U = ( x e. _V |-> ( rec ( ( y e. _V |-> U. y ) , x ) |` _om ) ) |
|
Assertion | itunifn | |- ( A e. V -> ( U ` A ) Fn _om ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ituni.u | |- U = ( x e. _V |-> ( rec ( ( y e. _V |-> U. y ) , x ) |` _om ) ) |
|
2 | frfnom | |- ( rec ( ( y e. _V |-> U. y ) , A ) |` _om ) Fn _om |
|
3 | 1 | itunifval | |- ( A e. V -> ( U ` A ) = ( rec ( ( y e. _V |-> U. y ) , A ) |` _om ) ) |
4 | 3 | fneq1d | |- ( A e. V -> ( ( U ` A ) Fn _om <-> ( rec ( ( y e. _V |-> U. y ) , A ) |` _om ) Fn _om ) ) |
5 | 2 4 | mpbiri | |- ( A e. V -> ( U ` A ) Fn _om ) |