Metamath Proof Explorer


Theorem itunifn

Description: Functionality of the iterated union. (Contributed by Stefan O'Rear, 11-Feb-2015)

Ref Expression
Hypothesis ituni.u
|- U = ( x e. _V |-> ( rec ( ( y e. _V |-> U. y ) , x ) |` _om ) )
Assertion itunifn
|- ( A e. V -> ( U ` A ) Fn _om )

Proof

Step Hyp Ref Expression
1 ituni.u
 |-  U = ( x e. _V |-> ( rec ( ( y e. _V |-> U. y ) , x ) |` _om ) )
2 frfnom
 |-  ( rec ( ( y e. _V |-> U. y ) , A ) |` _om ) Fn _om
3 1 itunifval
 |-  ( A e. V -> ( U ` A ) = ( rec ( ( y e. _V |-> U. y ) , A ) |` _om ) )
4 3 fneq1d
 |-  ( A e. V -> ( ( U ` A ) Fn _om <-> ( rec ( ( y e. _V |-> U. y ) , A ) |` _om ) Fn _om ) )
5 2 4 mpbiri
 |-  ( A e. V -> ( U ` A ) Fn _om )