Step |
Hyp |
Ref |
Expression |
1 |
|
ituni.u |
|- U = ( x e. _V |-> ( rec ( ( y e. _V |-> U. y ) , x ) |` _om ) ) |
2 |
|
fveq2 |
|- ( b = A -> ( U ` b ) = ( U ` A ) ) |
3 |
2
|
fveq1d |
|- ( b = A -> ( ( U ` b ) ` suc B ) = ( ( U ` A ) ` suc B ) ) |
4 |
|
iuneq1 |
|- ( b = A -> U_ a e. b ( ( U ` a ) ` B ) = U_ a e. A ( ( U ` a ) ` B ) ) |
5 |
3 4
|
eqeq12d |
|- ( b = A -> ( ( ( U ` b ) ` suc B ) = U_ a e. b ( ( U ` a ) ` B ) <-> ( ( U ` A ) ` suc B ) = U_ a e. A ( ( U ` a ) ` B ) ) ) |
6 |
|
suceq |
|- ( d = (/) -> suc d = suc (/) ) |
7 |
6
|
fveq2d |
|- ( d = (/) -> ( ( U ` b ) ` suc d ) = ( ( U ` b ) ` suc (/) ) ) |
8 |
|
fveq2 |
|- ( d = (/) -> ( ( U ` a ) ` d ) = ( ( U ` a ) ` (/) ) ) |
9 |
8
|
iuneq2d |
|- ( d = (/) -> U_ a e. b ( ( U ` a ) ` d ) = U_ a e. b ( ( U ` a ) ` (/) ) ) |
10 |
7 9
|
eqeq12d |
|- ( d = (/) -> ( ( ( U ` b ) ` suc d ) = U_ a e. b ( ( U ` a ) ` d ) <-> ( ( U ` b ) ` suc (/) ) = U_ a e. b ( ( U ` a ) ` (/) ) ) ) |
11 |
|
suceq |
|- ( d = c -> suc d = suc c ) |
12 |
11
|
fveq2d |
|- ( d = c -> ( ( U ` b ) ` suc d ) = ( ( U ` b ) ` suc c ) ) |
13 |
|
fveq2 |
|- ( d = c -> ( ( U ` a ) ` d ) = ( ( U ` a ) ` c ) ) |
14 |
13
|
iuneq2d |
|- ( d = c -> U_ a e. b ( ( U ` a ) ` d ) = U_ a e. b ( ( U ` a ) ` c ) ) |
15 |
12 14
|
eqeq12d |
|- ( d = c -> ( ( ( U ` b ) ` suc d ) = U_ a e. b ( ( U ` a ) ` d ) <-> ( ( U ` b ) ` suc c ) = U_ a e. b ( ( U ` a ) ` c ) ) ) |
16 |
|
suceq |
|- ( d = suc c -> suc d = suc suc c ) |
17 |
16
|
fveq2d |
|- ( d = suc c -> ( ( U ` b ) ` suc d ) = ( ( U ` b ) ` suc suc c ) ) |
18 |
|
fveq2 |
|- ( d = suc c -> ( ( U ` a ) ` d ) = ( ( U ` a ) ` suc c ) ) |
19 |
18
|
iuneq2d |
|- ( d = suc c -> U_ a e. b ( ( U ` a ) ` d ) = U_ a e. b ( ( U ` a ) ` suc c ) ) |
20 |
17 19
|
eqeq12d |
|- ( d = suc c -> ( ( ( U ` b ) ` suc d ) = U_ a e. b ( ( U ` a ) ` d ) <-> ( ( U ` b ) ` suc suc c ) = U_ a e. b ( ( U ` a ) ` suc c ) ) ) |
21 |
|
suceq |
|- ( d = B -> suc d = suc B ) |
22 |
21
|
fveq2d |
|- ( d = B -> ( ( U ` b ) ` suc d ) = ( ( U ` b ) ` suc B ) ) |
23 |
|
fveq2 |
|- ( d = B -> ( ( U ` a ) ` d ) = ( ( U ` a ) ` B ) ) |
24 |
23
|
iuneq2d |
|- ( d = B -> U_ a e. b ( ( U ` a ) ` d ) = U_ a e. b ( ( U ` a ) ` B ) ) |
25 |
22 24
|
eqeq12d |
|- ( d = B -> ( ( ( U ` b ) ` suc d ) = U_ a e. b ( ( U ` a ) ` d ) <-> ( ( U ` b ) ` suc B ) = U_ a e. b ( ( U ` a ) ` B ) ) ) |
26 |
|
uniiun |
|- U. b = U_ a e. b a |
27 |
1
|
itunisuc |
|- ( ( U ` b ) ` suc (/) ) = U. ( ( U ` b ) ` (/) ) |
28 |
1
|
ituni0 |
|- ( b e. _V -> ( ( U ` b ) ` (/) ) = b ) |
29 |
28
|
elv |
|- ( ( U ` b ) ` (/) ) = b |
30 |
29
|
unieqi |
|- U. ( ( U ` b ) ` (/) ) = U. b |
31 |
27 30
|
eqtri |
|- ( ( U ` b ) ` suc (/) ) = U. b |
32 |
1
|
ituni0 |
|- ( a e. b -> ( ( U ` a ) ` (/) ) = a ) |
33 |
32
|
iuneq2i |
|- U_ a e. b ( ( U ` a ) ` (/) ) = U_ a e. b a |
34 |
26 31 33
|
3eqtr4i |
|- ( ( U ` b ) ` suc (/) ) = U_ a e. b ( ( U ` a ) ` (/) ) |
35 |
1
|
itunisuc |
|- ( ( U ` b ) ` suc suc c ) = U. ( ( U ` b ) ` suc c ) |
36 |
|
unieq |
|- ( ( ( U ` b ) ` suc c ) = U_ a e. b ( ( U ` a ) ` c ) -> U. ( ( U ` b ) ` suc c ) = U. U_ a e. b ( ( U ` a ) ` c ) ) |
37 |
1
|
itunisuc |
|- ( ( U ` a ) ` suc c ) = U. ( ( U ` a ) ` c ) |
38 |
37
|
a1i |
|- ( a e. b -> ( ( U ` a ) ` suc c ) = U. ( ( U ` a ) ` c ) ) |
39 |
38
|
iuneq2i |
|- U_ a e. b ( ( U ` a ) ` suc c ) = U_ a e. b U. ( ( U ` a ) ` c ) |
40 |
|
iuncom4 |
|- U_ a e. b U. ( ( U ` a ) ` c ) = U. U_ a e. b ( ( U ` a ) ` c ) |
41 |
39 40
|
eqtr2i |
|- U. U_ a e. b ( ( U ` a ) ` c ) = U_ a e. b ( ( U ` a ) ` suc c ) |
42 |
36 41
|
eqtrdi |
|- ( ( ( U ` b ) ` suc c ) = U_ a e. b ( ( U ` a ) ` c ) -> U. ( ( U ` b ) ` suc c ) = U_ a e. b ( ( U ` a ) ` suc c ) ) |
43 |
35 42
|
eqtrid |
|- ( ( ( U ` b ) ` suc c ) = U_ a e. b ( ( U ` a ) ` c ) -> ( ( U ` b ) ` suc suc c ) = U_ a e. b ( ( U ` a ) ` suc c ) ) |
44 |
43
|
a1i |
|- ( c e. _om -> ( ( ( U ` b ) ` suc c ) = U_ a e. b ( ( U ` a ) ` c ) -> ( ( U ` b ) ` suc suc c ) = U_ a e. b ( ( U ` a ) ` suc c ) ) ) |
45 |
10 15 20 25 34 44
|
finds |
|- ( B e. _om -> ( ( U ` b ) ` suc B ) = U_ a e. b ( ( U ` a ) ` B ) ) |
46 |
|
iun0 |
|- U_ a e. b (/) = (/) |
47 |
46
|
eqcomi |
|- (/) = U_ a e. b (/) |
48 |
|
peano2b |
|- ( B e. _om <-> suc B e. _om ) |
49 |
|
vex |
|- b e. _V |
50 |
1
|
itunifn |
|- ( b e. _V -> ( U ` b ) Fn _om ) |
51 |
|
fndm |
|- ( ( U ` b ) Fn _om -> dom ( U ` b ) = _om ) |
52 |
49 50 51
|
mp2b |
|- dom ( U ` b ) = _om |
53 |
52
|
eleq2i |
|- ( suc B e. dom ( U ` b ) <-> suc B e. _om ) |
54 |
48 53
|
bitr4i |
|- ( B e. _om <-> suc B e. dom ( U ` b ) ) |
55 |
|
ndmfv |
|- ( -. suc B e. dom ( U ` b ) -> ( ( U ` b ) ` suc B ) = (/) ) |
56 |
54 55
|
sylnbi |
|- ( -. B e. _om -> ( ( U ` b ) ` suc B ) = (/) ) |
57 |
|
vex |
|- a e. _V |
58 |
1
|
itunifn |
|- ( a e. _V -> ( U ` a ) Fn _om ) |
59 |
|
fndm |
|- ( ( U ` a ) Fn _om -> dom ( U ` a ) = _om ) |
60 |
57 58 59
|
mp2b |
|- dom ( U ` a ) = _om |
61 |
60
|
eleq2i |
|- ( B e. dom ( U ` a ) <-> B e. _om ) |
62 |
|
ndmfv |
|- ( -. B e. dom ( U ` a ) -> ( ( U ` a ) ` B ) = (/) ) |
63 |
61 62
|
sylnbir |
|- ( -. B e. _om -> ( ( U ` a ) ` B ) = (/) ) |
64 |
63
|
iuneq2d |
|- ( -. B e. _om -> U_ a e. b ( ( U ` a ) ` B ) = U_ a e. b (/) ) |
65 |
47 56 64
|
3eqtr4a |
|- ( -. B e. _om -> ( ( U ` b ) ` suc B ) = U_ a e. b ( ( U ` a ) ` B ) ) |
66 |
45 65
|
pm2.61i |
|- ( ( U ` b ) ` suc B ) = U_ a e. b ( ( U ` a ) ` B ) |
67 |
5 66
|
vtoclg |
|- ( A e. V -> ( ( U ` A ) ` suc B ) = U_ a e. A ( ( U ` a ) ` B ) ) |