Step |
Hyp |
Ref |
Expression |
1 |
|
ituni.u |
|- U = ( x e. _V |-> ( rec ( ( y e. _V |-> U. y ) , x ) |` _om ) ) |
2 |
|
fveq2 |
|- ( a = A -> ( U ` a ) = ( U ` A ) ) |
3 |
2
|
fveq1d |
|- ( a = A -> ( ( U ` a ) ` B ) = ( ( U ` A ) ` B ) ) |
4 |
|
fveq2 |
|- ( a = A -> ( TC ` a ) = ( TC ` A ) ) |
5 |
3 4
|
sseq12d |
|- ( a = A -> ( ( ( U ` a ) ` B ) C_ ( TC ` a ) <-> ( ( U ` A ) ` B ) C_ ( TC ` A ) ) ) |
6 |
|
fveq2 |
|- ( b = (/) -> ( ( U ` a ) ` b ) = ( ( U ` a ) ` (/) ) ) |
7 |
6
|
sseq1d |
|- ( b = (/) -> ( ( ( U ` a ) ` b ) C_ ( TC ` a ) <-> ( ( U ` a ) ` (/) ) C_ ( TC ` a ) ) ) |
8 |
|
fveq2 |
|- ( b = c -> ( ( U ` a ) ` b ) = ( ( U ` a ) ` c ) ) |
9 |
8
|
sseq1d |
|- ( b = c -> ( ( ( U ` a ) ` b ) C_ ( TC ` a ) <-> ( ( U ` a ) ` c ) C_ ( TC ` a ) ) ) |
10 |
|
fveq2 |
|- ( b = suc c -> ( ( U ` a ) ` b ) = ( ( U ` a ) ` suc c ) ) |
11 |
10
|
sseq1d |
|- ( b = suc c -> ( ( ( U ` a ) ` b ) C_ ( TC ` a ) <-> ( ( U ` a ) ` suc c ) C_ ( TC ` a ) ) ) |
12 |
|
fveq2 |
|- ( b = B -> ( ( U ` a ) ` b ) = ( ( U ` a ) ` B ) ) |
13 |
12
|
sseq1d |
|- ( b = B -> ( ( ( U ` a ) ` b ) C_ ( TC ` a ) <-> ( ( U ` a ) ` B ) C_ ( TC ` a ) ) ) |
14 |
1
|
ituni0 |
|- ( a e. _V -> ( ( U ` a ) ` (/) ) = a ) |
15 |
|
tcid |
|- ( a e. _V -> a C_ ( TC ` a ) ) |
16 |
14 15
|
eqsstrd |
|- ( a e. _V -> ( ( U ` a ) ` (/) ) C_ ( TC ` a ) ) |
17 |
16
|
elv |
|- ( ( U ` a ) ` (/) ) C_ ( TC ` a ) |
18 |
1
|
itunisuc |
|- ( ( U ` a ) ` suc c ) = U. ( ( U ` a ) ` c ) |
19 |
|
tctr |
|- Tr ( TC ` a ) |
20 |
|
pwtr |
|- ( Tr ( TC ` a ) <-> Tr ~P ( TC ` a ) ) |
21 |
19 20
|
mpbi |
|- Tr ~P ( TC ` a ) |
22 |
|
trss |
|- ( Tr ~P ( TC ` a ) -> ( ( ( U ` a ) ` c ) e. ~P ( TC ` a ) -> ( ( U ` a ) ` c ) C_ ~P ( TC ` a ) ) ) |
23 |
21 22
|
ax-mp |
|- ( ( ( U ` a ) ` c ) e. ~P ( TC ` a ) -> ( ( U ` a ) ` c ) C_ ~P ( TC ` a ) ) |
24 |
|
fvex |
|- ( ( U ` a ) ` c ) e. _V |
25 |
24
|
elpw |
|- ( ( ( U ` a ) ` c ) e. ~P ( TC ` a ) <-> ( ( U ` a ) ` c ) C_ ( TC ` a ) ) |
26 |
|
sspwuni |
|- ( ( ( U ` a ) ` c ) C_ ~P ( TC ` a ) <-> U. ( ( U ` a ) ` c ) C_ ( TC ` a ) ) |
27 |
23 25 26
|
3imtr3i |
|- ( ( ( U ` a ) ` c ) C_ ( TC ` a ) -> U. ( ( U ` a ) ` c ) C_ ( TC ` a ) ) |
28 |
18 27
|
eqsstrid |
|- ( ( ( U ` a ) ` c ) C_ ( TC ` a ) -> ( ( U ` a ) ` suc c ) C_ ( TC ` a ) ) |
29 |
28
|
a1i |
|- ( c e. _om -> ( ( ( U ` a ) ` c ) C_ ( TC ` a ) -> ( ( U ` a ) ` suc c ) C_ ( TC ` a ) ) ) |
30 |
7 9 11 13 17 29
|
finds |
|- ( B e. _om -> ( ( U ` a ) ` B ) C_ ( TC ` a ) ) |
31 |
|
vex |
|- a e. _V |
32 |
1
|
itunifn |
|- ( a e. _V -> ( U ` a ) Fn _om ) |
33 |
|
fndm |
|- ( ( U ` a ) Fn _om -> dom ( U ` a ) = _om ) |
34 |
31 32 33
|
mp2b |
|- dom ( U ` a ) = _om |
35 |
34
|
eleq2i |
|- ( B e. dom ( U ` a ) <-> B e. _om ) |
36 |
|
ndmfv |
|- ( -. B e. dom ( U ` a ) -> ( ( U ` a ) ` B ) = (/) ) |
37 |
35 36
|
sylnbir |
|- ( -. B e. _om -> ( ( U ` a ) ` B ) = (/) ) |
38 |
|
0ss |
|- (/) C_ ( TC ` a ) |
39 |
37 38
|
eqsstrdi |
|- ( -. B e. _om -> ( ( U ` a ) ` B ) C_ ( TC ` a ) ) |
40 |
30 39
|
pm2.61i |
|- ( ( U ` a ) ` B ) C_ ( TC ` a ) |
41 |
5 40
|
vtoclg |
|- ( A e. _V -> ( ( U ` A ) ` B ) C_ ( TC ` A ) ) |
42 |
|
fv2prc |
|- ( -. A e. _V -> ( ( U ` A ) ` B ) = (/) ) |
43 |
|
0ss |
|- (/) C_ ( TC ` A ) |
44 |
42 43
|
eqsstrdi |
|- ( -. A e. _V -> ( ( U ` A ) ` B ) C_ ( TC ` A ) ) |
45 |
41 44
|
pm2.61i |
|- ( ( U ` A ) ` B ) C_ ( TC ` A ) |